Hey, guys. In this video, we're going to be talking about Ampere's law and how to use it. Alright? Let's get to it. Any magnetic field, b, must satisfy the following equation. This is what's known as a line integral. Okay? I am integrating b along some line that creates an arbitrary shape, which I called s. Okay? And this line integral always equals μ₀ Ienclosed. Okay? Notice that this integral has this little circle in the integral sign. All that means is that it's a closed line. Okay? We saw this before for Gauss's law, where we use the circle for the surface integral. Okay? And we said that that was a closed surface. So this has to be a closed loop or a closed line, which we call an amperean loop. Okay? And what Ampere's law says is that this integral depends only on the current enclosed by that amperean loop. And a consequence of that is that the magnetic field is only going to depend upon the current enclosed by that amperean loop as well, just like we saw in Gauss's law. Okay? How to apply this is pretty straightforward. If we take this arbitrary curve s in the figure above me, which surrounds a current I, everywhere along this loop, I can measure the magnetic field, and I can do the dot product with dl. All dl is is it's a very small it's an infinitesimal segment that goes along the curve. Right? So at this point, dl is going to be like this. This point, dl is going to be like this. It just points tangential to the curve. Right? Tangential everywhere. And the magnetic field is going to depend it's going to point in something like this. It would look something like this. It would look something like this. Something like this. Something like this, etcetera. And I could do the dot products, add all those up, integrate it along the curve s, and that would equate to a measurement times the charge enclosed. Okay? Let's apply Ampere's law for a scenario that we've already seen a bunch of times. Using Ampere's law, find the magnetic field due to an infinitely long current carrying wire. So I'm just going to draw the current as going into the page. Okay. Exactly like the figure above. Now, what does that magnetic field look like? Alright. Well, I'm going to stick my thumb in the direction of that current into the page, and the magnetic field is going to curl around it exactly like that. Okay? Which means if I were to draw an empyrean loop that was a circle of some radius r, the magnetic field is always going to be parallel to that line segment dl. Remember, that line segment always points tangential to the curve. Right? So Ampere's law says that this integral, b⋅dl, is going to just be bdl. That dot product is always going to be 1 because they always point parallel. And this equals μ₀ Ienclosed. Okay? Now just like we did for Gauss's law, we cheated a little bit because we knew what the magnetic field looked like. We had to cheat with Gauss's law as well by knowing what the electric field looks like. Furthermore, along this circle, because it's of a constant radius, the magnetic field is constant. So as I go along this circle, as I change my dl, the magnetic field doesn't change. So I can pull that field out. Okay? And lastly, I just need to solve this integral. Well, if I go around the circle one revolution, I've covered a distance equal to the circumference. So that magnetic field is just 2 pi r, and I enclosed is just I. I over 2 pi r. Exactly what we would expect it to be, and what we've seen it to be over and over again. Okay? So Ampere's law tells us what the magnetic field due to an infinitely long wire is much, much more quickly than Biot Savart law does, for instance. Alright. Thanks for watching, guys.
Table of contents
- 0. Math Review Coming soon
- 1. Intro to Physics Units1h 24m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
29. Sources of Magnetic Field
Ampere's Law (Calculus)
Struggling with Physics?
Join thousands of students who trust us to help them ace their exams!Watch the first videoVideo duration:
5mPlay a video:
Related Videos
Related Practice
Ampere's Law (Calculus) practice set
