Define and distinguish epistasis and pleiotropy.
In a cross of two pure-breeding lines of tomatoes producing different fruit sizes, the variance in grams (g) of fruit weight in the F₁ is 2.25 g and the variance among the F₂ is 5.40 g. Determine the genetic and environmental variance (VG and VE) for the trait and the broad sense heritability of the trait.


Verified video answer for a similar problem:
Key Concepts
Genetic Variance (VG)
Environmental Variance (VE)
Broad-Sense Heritability (H²)
In a test of his chromosome theory of heredity, Morgan crossed a female Drosophila with red eyes to a male with white eyes. The females were produced from Cross A shown in Figure 3.19. Predict the offspring Morgan would have expected under his hypothesis that the gene for eye color is on the X chromosome in fruit flies.
Compare and contrast broad sense heritability and narrow sense heritability, giving an example of each measurement and identifying how the measurement is used.
Describe the difference between continuous phenotypic variation and discontinuous variation. Explain how polygenic inheritance could be the basis of a trait showing continuous phenotypic variation. Explain how polygenic inheritance can be the basis of a threshold trait.
In Drosophila, the map positions of genes are given in map units numbering from one end of a chromosome to the other. The X chromosome of Drosophila is 66 m.u. long. The X-linked gene for body color—with two alleles, y⁺ for gray body and y for yellow body—resides at one end of the chromosome at map position 0.0. A nearby locus for eye color, with alleles w⁺ for red eye and w for white eye, is located at map position 1.5. A third X-linked gene, controlling bristle form, with f⁺ for normal bristles and f for forked bristles, is located at map position 56.7. At each locus the wild-type allele is dominant over the mutant allele.
In a cross involving these three X-linked genes, do you expect any gene pair(s) to show genetic linkage? Explain your reasoning.
In Drosophila, the map positions of genes are given in map units numbering from one end of a chromosome to the other. The X chromosome of Drosophila is 66 m.u. long. The X-linked gene for body color—with two alleles, y⁺ for gray body and y for yellow body—resides at one end of the chromosome at map position 0.0. A nearby locus for eye color, with alleles w⁺ for red eye and w for white eye, is located at map position 1.5. A third X-linked gene, controlling bristle form, with f⁺ for normal bristles and f for forked bristles, is located at map position 56.7. At each locus the wild-type allele is dominant over the mutant allele.
Do you expect any of these gene pair(s) to assort independently? Explain your reasoning.