Skip to main content
Ch. 24 - Cancer Genetics

Chapter 23, Problem 28

The table in this problem summarizes some of the data that have been collected on mutations in the BRCA1 tumor-suppressor gene in families with a high incidence of both early-onset breast cancer and ovarian cancer.

Predisposing Mutations in BRCA1
Kindred    Codon    Nucleotide     Coding Effect     Frequency in
                               Change                                    Control
                                                                                Chromosomes    
 1901          24           -11 bp          Frameshift           0/180
                                                       or splice
 2082        1313         C→T           Gln→Stop            0/170
 1910        1756         Extra C        Frameshift           0/162
 2099        1775         T→G            Met→Arg            0/120
 2035         NA*          ?                  Loss of                NA*
                                                       transcript                                      _
Source: (1994). Science 266:66–71. © AAAS.

Examine the types of mutations that are listed in the table, and determine if the BRCA1 gene is likely to be a tumor-suppressor gene or an oncogene.

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
221
views
Was this helpful?

Video transcript

Hey everyone, let's take a look at this question together. The blank are those healthy genes that can help maintain normal cell growth? Meanwhile, blank are those genes that can replicate uncontrollably which can eventually cause cancer. So let's recall the different types of genes within the body to try to figure out which term describes the healthy genes that maintain normal cell growth. And what term describes the genes that replicate uncontrollably which can eventually cause cancer. So we know that we have a type of gene called an Oncogene. And so these are the jeans that cause tumors and these tumors can eventually lead to cancer. So on the contrary we have something called a proto oncogene which are these healthy genes and these healthy genes are the genes which help growth. And so looking at our question, we see that the question asks us about the healthy genes that can help maintain normal cell growth which we know are the proto AnKA genes and the genes that replicate uncontrollably which eventually cause cancer are the ANKA genes. So looking at our answer choices which option best represents that combination. And we see answer choice C. Says proto AnKA genes followed by AnKA genes which is the correct answer because we note that the proto AnKA genes are the healthy genes that can help maintain normal cell growth. While the ANKA genes are the genes that replicate uncontrollably which eventually cause cancer. So answer choice C. Is the correct answer. I hope you found this video to be helpful. Thank you and goodbye
Related Practice
Textbook Question

Those who inherit a mutant allele of the RB1 tumor-suppressor gene are at risk for developing a bone cancer called osteosarcoma. You suspect that in these cases, osteosarcoma requires a mutation in the second RB1 allele, and you have cultured some osteosarcoma cells and obtained a cDNA clone of a normal human RB1 gene. A colleague sends you a research paper revealing that a strain of cancer-prone mice develop malignant tumors when injected with osteosarcoma cells, and you obtain these mice. Using these three resources, what experiments would you perform to determine (a) whether osteosarcoma cells carry two RB1 mutations, (b) whether osteosarcoma cells produce any pRB protein, and (c) if the addition of a normal RB1 gene will change the cancer-causing potential of osteosarcoma cells?

267
views
Textbook Question

What evidence indicates that mutations in human DNA mismatch repair genes are related to certain forms of cancer?

279
views
Textbook Question

The table in this problem summarizes some of the data that have been collected on mutations in the BRCA1 tumor-suppressor gene in families with a high incidence of both early-onset breast cancer and ovarian cancer.

Predisposing Mutations in BRCA1
Kindred    Codon    Nucleotide     Coding Effect     Frequency in
                               Change                                    Control
                                                                                Chromosomes    
 1901          24           -11 bp          Frameshift           0/180
                                                       or splice
 2082        1313         C→T           Gln→Stop            0/170
 1910        1756         Extra C        Frameshift           0/162
 2099        1775         T→G            Met→Arg            0/120
 2035         NA*          ?                  Loss of                NA*
                                                       transcript                                      _
Source: (1994). Science 266:66–71. © AAAS.

Note the coding effect of the mutation found in kindred group 2082. This results from a single base-pair substitution. Draw the normal double-stranded DNA sequence for this codon (with the 5' and 3' ends labeled), and show the sequence of events that generated this mutation, assuming that it resulted from an uncorrected mismatch event during DNA replication.

286
views
Textbook Question

The table in this problem summarizes some of the data that have been collected on mutations in the BRCA1 tumor-suppressor gene in families with a high incidence of both early-onset breast cancer and ovarian cancer.

Predisposing Mutations in BRCA1
Kindred    Codon    Nucleotide     Coding Effect     Frequency in
                               Change                                    Control
                                                                                Chromosomes    
 1901          24           -11 bp          Frameshift           0/180
                                                       or splice
 2082        1313         C→T           Gln→Stop            0/170
 1910        1756         Extra C        Frameshift           0/162
 2099        1775         T→G            Met→Arg            0/120
 2035         NA*          ?                  Loss of                NA*
                                                       transcript                                      _
Source: (1994). Science 266:66–71. © AAAS.

Although the mutations listed in the table are clearly deleterious and cause breast cancer in women at very young ages, each of the kindred groups had at least one woman who carried the mutation but lived until age 80 without developing cancer. Name at least two different mechanisms (or variables) that could underlie variation in the expression of a mutant phenotype, and propose an explanation for the incomplete penetrance of this mutation. How do these mechanisms or variables relate to this explanation?

262
views
Textbook Question

Researchers have identified some tumors that have no recurrent mutations or deletions in known oncogenes or tumor-suppressor genes and no detectable epigenetic alterations. However, these tumors often have large chromosomal deletions. What are some possible explanations that could account for the genetic causes behind these tumors?

224
views
Textbook Question

Skin cancer carries a lifetime risk nearly equal to that of all other cancers combined. Following is a graph [modified from K. H. Kraemer (1997). Proc. Natl. Acad. Sci. (USA) 94:11–14] depicting the age of onset of skin cancers in patients with or without XP, where the cumulative percentage of skin cancer is plotted against age. The non-XP curve is based on 29,757 cancers surveyed by the National Cancer Institute, and the curve representing those with XP is based on 63 skin cancers from the Xeroderma Pigmentosum Registry.

Provide an overview of the information contained in the graph. 

319
views