Skip to main content
Ch. 15 - Gene Mutation, DNA Repair, and Transposition
Chapter 15, Problem 23

Many of the gene products involved in DNA synthesis were initially defined by studying mutant E. coli strains that could not synthesize DNA. The dnaQ gene encodes the ε subunit of DNA polymerase. What effect is expected from a mutation in this gene?

Verified Solution

Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

DNA Polymerase Function

DNA polymerase is an essential enzyme responsible for synthesizing new DNA strands during replication. It adds nucleotides to a growing DNA chain, ensuring accurate duplication of the genetic material. The ε subunit, encoded by the dnaQ gene, is specifically involved in proofreading and correcting errors during DNA synthesis, which is crucial for maintaining genetic fidelity.
Recommended video:
Guided course
08:26
Functional Genomics

Mutations and Their Effects

A mutation is a change in the DNA sequence that can affect gene function. Mutations in critical genes, such as dnaQ, can lead to altered protein function, which may result in increased error rates during DNA replication. This can cause a range of effects, from minor changes in phenotype to severe consequences, including cell death or cancer.
Recommended video:
Guided course
03:38
Maternal Effect

E. coli as a Model Organism

Escherichia coli (E. coli) is a widely used model organism in genetics and molecular biology due to its simple structure, rapid growth, and well-characterized genetics. Studies of mutant strains of E. coli have provided significant insights into fundamental biological processes, including DNA replication and repair mechanisms, making it a valuable tool for understanding gene function and the consequences of mutations.
Recommended video:
Guided course
09:12
Transgenic Organisms and Gene Therapy
Related Practice
Textbook Question
The SOS repair genes in E. coli (discussed in Chapter 15) are negatively regulated by the lexA gene product, called the LexA repressor. When a cell's DNA sustains extensive damage, the LexA repressor is inactivated by the recA gene product (RecA), and transcription of the SOS genes is increased dramatically. One of the SOS genes is the uvrA gene. You are a student studying the function of the uvrA gene product in DNA repair. You isolate a mutant strain that shows constitutive expression of the UvrA protein. Naming this mutant strain uvrAᶜ, you construct the diagram shown above in the right-hand column showing the lexA and uvrA operons: Outline a series of genetic experiments that would use partial diploid strains to determine which of the two possible mutations you have isolated.
500
views
Textbook Question
The human genome contains approximately 10⁶ copies of an Alu sequence, one of the best-studied classes of short interspersed elements (SINEs), per haploid genome. Individual Alu units share a 282-nucleotide consensus sequence followed by a 3'-adenine-rich tail region [Schmid (1998)]. Given that there are approximately 3 x 10⁹ base pairs per human haploid genome, about how many base pairs are spaced between each Alu sequence?
375
views
Textbook Question
Many of the gene products involved in DNA synthesis were initially defined by studying mutant E. coli strains that could not synthesize DNA. The dnaE gene encodes the α subunit of DNA polymerase III. What effect is expected from a mutation in this gene? How could the mutant strain be maintained?
258
views
Textbook Question
A fellow student considers the issues in Problem 22 and argues that there is a more straightforward, nongenetic experiment that could differentiate between the two types of mutations. The experiment requires no fancy genetics and would allow you to easily assay the products of the other SOS genes. Propose such an experiment.
212
views
Textbook Question
In a bacterial culture in which all cells are unable to synthesize leucine (leu⁻), a potent mutagen is added, and the cells are allowed to undergo one round of replication. At that point, samples are taken, a series of dilutions are made, and the cells are plated on either minimal medium or minimal medium containing leucine. The first culture condition (minimal medium) allows the growth of only leu⁺ cells, while the second culture condition (minimal medium with leucine added) allows growth of all cells. The results of the experiment are as follows: Culture Condition Dilution Colonies Minimal medium 10⁻¹ 18 Minimal medium + leucine 10⁻⁷ 9 What is the rate of mutation at the locus associated with leucine biosynthesis?
340
views
Textbook Question

In 2010, a U.S. District Judge ruled to invalidate Myriad Genetics' patents on the BRCA1 and BRCA2 genes. Judge Sweet noted that since the genes are part of the natural world, they are not patentable. Myriad Genetics also holds patents on the development of a direct-to-consumer test for the BRCA1 and BRCA2 genes.

Would you agree with the ruling to invalidate the patenting of the BRCA1 and BRCA2 genes? If you were asked to judge the patenting of the direct-to-consumer test for the BRCA1 and BRCA2 genes, how would you rule?

224
views