Skip to main content
Ch.16 - Chemical Equilibrium
Chapter 16, Problem 76

Coal can be used to generate hydrogen gas (a potential fuel) by the endothermic reaction: C(s) + H2O(g) ⇌ CO(g) + H2(g) If this reaction mixture is at equilibrium, predict whether each disturbance will result in the formation of additional hydrogen gas, the formation of less hydrogen gas, or have no effect on the quantity of hydrogen gas. e. adding a catalyst to the reaction mixture

Verified Solution

Video duration:
48s
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Chemical Equilibrium

Chemical equilibrium occurs when the rates of the forward and reverse reactions are equal, resulting in constant concentrations of reactants and products. In this state, any changes to the system, such as concentration, pressure, or temperature, can shift the equilibrium position according to Le Chatelier's principle, which predicts how the system will respond to disturbances.
Recommended video:
Guided course
04:21
Chemical Equilibrium Concepts

Le Chatelier's Principle

Le Chatelier's principle states that if a dynamic equilibrium is disturbed by changing the conditions, the system will adjust to counteract the change and restore a new equilibrium. For example, if the concentration of a reactant is increased, the system will shift to favor the formation of products, thereby increasing the amount of hydrogen gas in this reaction.
Recommended video:
Guided course
07:32
Le Chatelier's Principle

Catalysts and Reaction Rates

A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the process. While catalysts lower the activation energy required for a reaction, they do not affect the position of equilibrium; thus, adding a catalyst to the reaction mixture will speed up the attainment of equilibrium but will not change the amounts of hydrogen gas produced at equilibrium.
Recommended video:
Guided course
02:03
Average Rate of Reaction
Related Practice
Textbook Question

Coal, which is primarily carbon, can be converted to natural gas, primarily CH4, by the exothermic reaction: C(s) + 2 H2(g) ⇌ CH4(g) Which disturbance will favor CH4 at equilibrium?

a. adding more C to the reaction mixture b. adding more H2 to the reaction mixture d. lowering the volume of the reaction mixture f. adding neon gas to the reaction mixture

869
views
Textbook Question

Coal, which is primarily carbon, can be converted to natural gas, primarily CH4, by the exothermic reaction: C(s) + 2 H2(g) ⇌ CH4(g) Which disturbance will favor CH4 at equilibrium? c. raising the temperature of the reaction mixture

1688
views
Textbook Question

Coal, which is primarily carbon, can be converted to natural gas, primarily CH4, by the exothermic reaction: C(s) + 2 H2(g) ⇌ CH4(g) Which disturbance will favor CH4 at equilibrium? e. adding a catalyst to the reaction mixture

450
views
Textbook Question

Carbon monoxide replaces oxygen in oxygenated hemoglobin according to the reaction: HbO2(aq) + CO(aq) ⇌ HbCO(aq) + O2(aq) a. Use the reactions and associated equilibrium constants at body temperature given here to find the equilibrium constant for the reaction just shown. Hb(aq) + O2(aq) ⇌ HbO2(aq) Kc = 1.8 Hb(aq) + CO(aq) ⇌ HbCO(aq) Kc = 306

2555
views
Textbook Question

At 650 K, the reaction MgCO3(s) ⇌ MgO(s) + CO2(g) has Kp = 0.026. A 10.0-L container at 650 K has 1.0 g of MgO(s) and CO2 at P = 0.0260 atm. The container is then compressed to a volume of 0.100 L. Find the mass of MgCO3 that is formed.

2253
views
Textbook Question

Consider the exothermic reaction: C2H4(g) + Cl2(g) ⇌ C2H4Cl2(g) If you were trying to maximize the amount of C2H4Cl2 produced, which tactic might you try? Assume that the reaction mixture reaches equilibrium. a. increasing the reaction volume b. removing C2H4Cl2 from the reaction mixture as it forms c. lowering the reaction temperature d. adding Cl2

2119
views