Skip to main content
Ch.14 - Solutions
Chapter 14, Problem 70

Which solution has the highest vapor pressure? a. 20.0 g of glucose (C6H12O6) in 100.0 mL of water b. 20.0 g of sucrose (C12H22O11) in 100.0 mL of water c. 10.0 g of potassium acetate KC2H3O2 in 100.0 mL of water

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Vapor Pressure

Vapor pressure is the pressure exerted by a vapor in equilibrium with its liquid or solid phase at a given temperature. It reflects the tendency of particles to escape from the liquid phase into the vapor phase. Solutions with lower concentrations of solute typically have higher vapor pressures because fewer solute particles disrupt the escape of solvent molecules.
Recommended video:
Guided course
02:40
Raoult's Law and Vapor Pressure

Colligative Properties

Colligative properties are properties of solutions that depend on the number of solute particles in a given amount of solvent, rather than the identity of the solute. These properties include vapor pressure lowering, boiling point elevation, freezing point depression, and osmotic pressure. The more solute particles present, the greater the effect on the vapor pressure, leading to a lower vapor pressure for more concentrated solutions.
Recommended video:
Guided course
01:26
Colligative Properties

Molar Mass and Particle Count

The molar mass of a solute determines how many moles are present in a given mass of solute. For example, glucose (C6H12O6) has a lower molar mass than sucrose (C12H22O11), meaning that for the same mass, glucose will produce more moles of solute particles in solution. This difference in particle count affects the colligative properties, including vapor pressure, as more particles lead to a greater lowering of vapor pressure.
Recommended video:
Guided course
02:11
Molar Mass Concept
Related Practice
Textbook Question

Household hydrogen peroxide is an aqueous solution containing 3.0% hydrogen peroxide by mass. What is the molarity of this solution? (Assume a density of 1.01 g/mL.)

1802
views
1
rank
Textbook Question

One brand of laundry bleach is an aqueous solution containing 4.55% sodium hypochlorite (NaOCl) by mass. What is the molarity of this solution? (Assume a density of 1.02 g/mL.)

1822
views
2
rank
Textbook Question

An aqueous solution contains 36% HCl by mass. Calculate the molality and mole fraction of the solution.

1601
views
Textbook Question

Calculate the vapor pressure of a solution containing 24.5 g of glycerin (C3H8O3) in 135 mL of water at 30.0 °C. The vapor pressure of pure water at this temperature is 31.8 torr. Assume that glycerin is not volatile and dissolves molecularly (i.e., it is not ionic), and use a density of 1.00 g/mL for the water.

3149
views
Textbook Question

A solution contains 50.0 g of heptane (C7H16) and 50.0 g of octane (C8H18) at 25 °C. The vapor pressures of pure heptane and pure octane at 25 °C are 45.8 torr and 10.9 torr, respectively. Assuming ideal behavior, answer the following: d. Why is the composition of the vapor different from the composition of the solution?

1207
views
Textbook Question

A solution contains a mixture of pentane and hexane at room temperature. The solution has a vapor pressure of 258 torr. Pure pentane and hexane have vapor pressures of 425 torr and 151 torr, respectively, at room temperature. What is the mole fraction composition of the mixture? (Assume ideal behavior.)

3035
views
1
comments