Skip to main content
Ch.14 - Solutions
Chapter 14, Problem 77

A glucose solution contains 55.8 g of glucose (C6H12O6) in 455 g of water. Determine the freezing point and boiling point of the solution.

Verified Solution

Video duration:
7m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Colligative Properties

Colligative properties are physical properties of solutions that depend on the number of solute particles in a given amount of solvent, rather than the identity of the solute. These properties include boiling point elevation and freezing point depression, which occur when a solute is added to a solvent, affecting the solvent's phase changes.
Recommended video:
Guided course
01:26
Colligative Properties

Freezing Point Depression

Freezing point depression is a colligative property that describes the decrease in the freezing point of a solvent when a solute is dissolved in it. The extent of freezing point depression can be calculated using the formula ΔTf = i * Kf * m, where ΔTf is the change in freezing point, i is the van 't Hoff factor, Kf is the freezing point depression constant, and m is the molality of the solution.
Recommended video:
Guided course
01:59
Freezing Point Depression

Boiling Point Elevation

Boiling point elevation is another colligative property that refers to the increase in the boiling point of a solvent when a solute is added. This phenomenon can be quantified using the formula ΔTb = i * Kb * m, where ΔTb is the change in boiling point, i is the van 't Hoff factor, Kb is the boiling point elevation constant, and m is the molality of the solution.
Recommended video:
Guided course
03:05
Boiling Point Elevation
Related Practice
Textbook Question

Calculate the vapor pressure of a solution containing 24.5 g of glycerin (C3H8O3) in 135 mL of water at 30.0 °C. The vapor pressure of pure water at this temperature is 31.8 torr. Assume that glycerin is not volatile and dissolves molecularly (i.e., it is not ionic), and use a density of 1.00 g/mL for the water.

3149
views
Textbook Question

A solution contains 50.0 g of heptane (C7H16) and 50.0 g of octane (C8H18) at 25 °C. The vapor pressures of pure heptane and pure octane at 25 °C are 45.8 torr and 10.9 torr, respectively. Assuming ideal behavior, answer the following: d. Why is the composition of the vapor different from the composition of the solution?

1207
views
Textbook Question

A solution contains a mixture of pentane and hexane at room temperature. The solution has a vapor pressure of 258 torr. Pure pentane and hexane have vapor pressures of 425 torr and 151 torr, respectively, at room temperature. What is the mole fraction composition of the mixture? (Assume ideal behavior.)

3035
views
1
comments
Textbook Question

Calculate the freezing point and boiling point of each aqueous solution, assuming complete dissociation of the solute. c. 5.5% NaNO3 by mass (in water)

2334
views
Textbook Question

What mass of salt (NaCl) should you add to 1.00 L of water in an ice cream maker to make a solution that freezes at -10.0 °C? Assume complete dissociation of the NaCl and density of 1.00 g/mL for water.

2756
views
Textbook Question

Use the van't Hoff factors in Table 13.9 to calculate each colligative property: a. the melting point of a 0.100 m iron(III) chloride solution

1654
views
1
rank