Calculate ∆G°rxn and K for each reaction.
a. The disproportionation of Mn2+(aq) to Mn(s) and MnO2(s) in acid solution at 25 °C.
b.The disproportionation of MnO2(s) to Mn2+(aq) and MnO4–(aq) in acid solution at 25 °C.
Calculate ∆G°rxn and K for each reaction.
a. The disproportionation of Mn2+(aq) to Mn(s) and MnO2(s) in acid solution at 25 °C.
b.The disproportionation of MnO2(s) to Mn2+(aq) and MnO4–(aq) in acid solution at 25 °C.
Calculate ∆Gr°xn and K for each reaction. a. The reaction of Cr2+(aq) with Cr2O7^2-(aq) in acid solution to form Cr3+(aq).
Calculate ∆Gr°xn and K for each reaction. b. The reaction of Cr3+(aq) and Cr(s) to form Cr2+(aq). [The electrode potential of Cr2+(aq) to Cr(s) is -0.91 V.]
A metal forms the fluoride MF3. Electrolysis of the molten fluo- ride by a current of 3.86 A for 16.2 minutes deposits 1.25 g of the metal. Calculate the molar mass of the metal.
A sample of impure tin of mass 0.535 g is dissolved in strong acid to give a solution of Sn2+. The solution is then titrated with a 0.0448 M solution of NO3-, which is reduced to NO(g). The equivalence point is reached upon the addition of 0.0344 L of the NO3- solution. Find the percent by mass of tin in the original sample, assuming that it contains no other reducing agents.