Ch.14 - Chemical Kinetics
Chapter 14, Problem 110
The half-life for radioactive decay (a first-order process) of plutonium- 239 is 24,000 years. How many years does it take for one mole of this radioactive material to decay until just one atom remains?
Verified Solution
Video duration:
3mThis video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?
Video transcript
Related Practice
Open Question
What rate law corresponds to the proposed mechanism for the formation of hydrogen bromide, which can be written in a simplified form as: Br2(g) → 2Br(g) (Fast) Br(g) + H2(g) → HBr(g) + H(g) (Slow) H(g) + Br2(g) → HBr(g) + Br(g) (Fast)?
Open Question
What rate law corresponds to the proposed mechanism for the formation of hydrogen iodide, which can be written in simplified form as: I2 Δk1k-1 2I (Fast), I + H2 Δk2k-2 H2I (Fast), H2I + I ¡k3 2HI (Slow)?
Textbook Question
A certain substance X decomposes. Fifty percent of X remains after 100 minutes. How much X remains after 200 minutes if the reaction order with respect to X is (c) second order?
1403
views
Open Question
The energy of activation for the decomposition of 2 mol of HI to H2 and I2 in the gas phase is 185 kJ. The heat of formation of HI(g) from H2(g) and I2(g) is -5.65 kJ/mol. Find the energy of activation for the reaction of 1 mol of H2 and 1 mol of I2 to form 2 mol of HI in the gas phase.
Open Question
Ethyl chloride vapor decomposes by the first-order reaction: C2H5Cl -> C2H4 + HCl. The activation energy is 249 kJ/mol, and the frequency factor is 1.6 * 10^14 s^-1. Find the temperature at which the rate of the reaction would be twice as fast.
Textbook Question
Ethyl chloride vapor decomposes by the first-order reaction: C2H5Cl → C2H4 + HCl The activation energy is 249 kJ/mol, and the frequency factor is 1.6⨉1014 s-1. Find the value of the rate constant at 710 K.
294
views