Chapter 14, Problem 25b
Consider the reaction:
2 HBr (g) → H2 (g) + Br2 (g)
b. In the first 25.0 s of this reaction, the concentration of HBr dropped from 0.600 M to 0.512 M. Calculate the average rate of the reaction during this time interval.
Video transcript
This reaction has an activation energy of zero in the gas phase: CH3 + CH3 → C2H6 a. Would you expect the rate of this reaction to change very much with temperature?
Consider the reaction: 2 H2O2(aq) → 2 H2O(l ) + O2( g) The graph shows the concentration of H2O2 as a function of time.
Use the graph to calculate each quantity: c. the instantaneous rate of formation of O2 at 50 s
Consider the reaction:
2 HBr (g) → H2 (g) + Br2 (g)
a. Express the rate of the reaction in terms of the change in concentration of each of the reactants and products.
Consider the reaction:
2 HBr (g) → H2 (g) + Br2 (g)
c. If the volume of the reaction vessel in part b was 1.50 L, what amount of Br2 (in moles) was formed during the first 15.0 s of the reaction?
Consider the reaction: 2 N2O( g) → 2 N2(g) + O2(g) a. Express the rate of the reaction in terms of the change in concentration of each of the reactants and products.
For the reaction 2 A(g) + B(g) → 3 C(g), a. Determine the expression for the rate of the reaction in terms of the change in concentration of each of the reactants and products.