Skip to main content
Ch.13 - Solutions
Chapter 13, Problem 117

The vapor pressure of carbon tetrachloride, CCl4, is 0.354 atm, and the vapor pressure of chloroform, CHCl3, is 0.526 atm at 316 K. A solution is prepared from equal masses of these two compounds at this temperature. Calculate the mole fraction of the chloroform in the vapor above the solution. If the vapor above the original solution is condensed and isolated into a separate flask, what will the vapor pressure of chloroform be above this new solution?

Verified Solution

Video duration:
6m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Vapor Pressure

Vapor pressure is the pressure exerted by a vapor in equilibrium with its liquid or solid phase at a given temperature. It reflects the tendency of particles to escape from the liquid phase into the vapor phase. The higher the vapor pressure, the more volatile the substance. In this question, the vapor pressures of carbon tetrachloride and chloroform are essential for determining the composition of the vapor above the solution.
Recommended video:
Guided course
02:40
Raoult's Law and Vapor Pressure

Raoult's Law

Raoult's Law states that the vapor pressure of a solvent in a solution is directly proportional to the mole fraction of the solvent in the solution. This principle allows us to calculate the partial pressures of each component in a mixture. In this scenario, Raoult's Law will be used to find the mole fraction of chloroform in the vapor above the solution, based on the known vapor pressures and the composition of the solution.
Recommended video:
Guided course
02:40
Raoult's Law and Vapor Pressure

Mole Fraction

Mole fraction is a way of expressing the concentration of a component in a mixture, defined as the number of moles of that component divided by the total number of moles of all components in the mixture. It is a dimensionless quantity that helps in calculating various properties of solutions, including vapor pressures. In this question, calculating the mole fraction of chloroform in the vapor is crucial for understanding the behavior of the solution and its components.
Recommended video:
Guided course
00:36
Mole Fraction Formula
Related Practice
Textbook Question

When HNO2 is dissolved in water, it partially dissociates according to the equation HNO2 ⇌ H+ + NO2-. A solution is prepared that contains 7.050 g of HNO2 in 1.000 kg of water. Its freezing point is -0.2929 °C. Calculate the fraction of HNO2 that has dissociated.

2984
views
Textbook Question

A solution of a nonvolatile solute in water has a boiling point of 375.3 K. Calculate the vapor pressure of water above this solution at 338 K. The vapor pressure of pure water at this temperature is 0.2467 atm.

2683
views
1
comments
Textbook Question

The density of a 0.438 M solution of potassium chromate (K2CrO4) at 298 K is 1.063 g/mL. Calculate the vapor pressure of water above the solution. The vapor pressure of pure water at this temperature is 0.0313 atm. (Assume complete dissociation of the solute.)

1380
views
1
rank
Open Question
Use the result of the previous problem to calculate the mole fraction of chloroform in the vapor above a solution obtained by three successive separations and condensations of the vapors above the original solution of carbon tetrachloride and chloroform. Show how this result explains the use of distillation as a separation method.
Open Question
A solution of 49.0% H2SO4 by mass has a density of 1.39 g/cm³ at 293 K. A 25.0-cm³ sample of this solution is mixed with enough water to increase the volume of the solution to 99.8 cm³. Find the molarity of sulfuric acid in this solution.
Textbook Question

Find the mass of urea (CH4N2O) needed to prepare 50.0 g of a solution in water in which the mole fraction of urea is 0.0770.

2341
views
1
comments