Ch.5 - Periodicity & Electronic Structure of Atoms
Chapter 5, Problem 64
Use the Balmer equation to calculate the wavelength in nano-meters of the spectral line for hydrogen when n = 6 and m = 2. What is the energy in kilojoules per mole of the radiation corresponding to this line?
Verified Solution
Video duration:
3mThis video solution was recommended by our tutors as helpful for the problem above.
1254
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Sodium-vapor lamps are a common source of lighting. The emission spectrum from this type of lamp is shown. Is this a continuous or line emission spectrum?
626
views
Textbook Question
According to the equation for the Balmer line spectrum of hydrogen, a value of n = 3 gives a red spectral line at 656.3 nm, a value of n = 4 gives a green line at 486.1 nm, and a value of n = 5 gives a blue line at 434.0 nm. Calculate the energy in kilojoules per mole of the radiation corresponding to each of these spectral lines.
1658
views
1
rank
Textbook Question
Calculate the wavelength and energy in kilojoules necessary to completely remove an electron from the second shell (m = 2) of a hydrogen atom (R∞ = 1.097 * 10-2 nm-1).
1122
views
Textbook Question
Protons and electrons can be given very high energies in particle accelerators. What is the wavelength in meters of an electron (mass = 9.11 * 10-31 kg) that has been accelerated to 5% of the speed of light? In what region of the electromagnetic spectrum is this wavelength?
656
views
Textbook Question
What is the de Broglie wavelength in meters of a baseball weighing 145 g and traveling at 156km/h? Why do we not observe this wavelength?
928
views
Textbook Question
At what speed in meters per second must a 145 g baseball be traveling to have a de Broglie wavelength of 0.500 nm?
622
views