Some reactions are so rapid that they are said to be diffusion-controlled; that is, the reactants react as quickly as they can collide. An example is the neutralization of H3O+ by OH-, which has a second-order rate constant of 1.3⨉1011 M-1 s-1 at 25 °C. (a) If equal volumes of 2.0 M HCl and 2.0 M NaOH are mixed instantaneously, how much time is required for 99.999% of the acid to be neutralized?
The following experimental data were obtained in a study of the reaction 2 HI1g2S H21g2 + I21g2. Predict the concentration of HI that would give a rate of 1.0 * 10-5 M>s at 650 K.
![](/channels/images/assetPage/verifiedSolution.png)
Verified Solution
![](/channels/images/informationIcon.png)
Key Concepts
Rate of Reaction
Temperature and Reaction Rate
Concentration and Rate Law
Some reactions are so rapid that they are said to be diffusion-controlled; that is, the reactants react as quickly as they can collide. An example is the neutralization of H3O+ by OH-, which has a second-order rate constant of 1.3⨉1011 M-1 s-1 at 25 °C. (b) Under normal laboratory conditions, would you expect the rate of the acid–base neutralization to be limited by the rate of the reaction or by the speed of mixing?
Values of Ea = 6.3 kJ/mol and A = 6.0⨉108/(M s) have been measured for the bimolecular reaction: NO(g) + F2(g) → NOF(g) + F(g) (a) Calculate the rate constant at 25 °C.
Values of Ea = 6.3 kJ/mol and A = 6.0⨉108/(M s) have been measured for the bimolecular reaction: NO(g) + F2(g) → NOF(g) + F(g) (d) Why does the reaction have such a low activation energy?