Skip to main content
Ch.10 - Gases: Their Properties & Behavior
Chapter 10, Problem 141a

When 10.0 g of a mixture of Ca(ClO3)2 and Ca(ClO)2 is heated to 700 °C in a 10.0-L vessel, both compounds decompose, forming O2(g) and CaCl2(s). The final pressure inside the vessel is 1.00 atm. (a) Write balanced equations for the decomposition reactions.

Verified Solution

Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Decomposition Reactions

Decomposition reactions occur when a single compound breaks down into two or more simpler products, often due to heat or other forms of energy. In this case, both calcium chlorate (Ca(ClO3)2) and calcium hypochlorite (Ca(ClO)2) decompose upon heating, releasing oxygen gas (O2) and forming calcium chloride (CaCl2). Understanding the specific products formed during decomposition is crucial for writing balanced chemical equations.
Recommended video:
Guided course
01:30
Alcohol Reactions: Dehydration Reactions

Balanced Chemical Equations

A balanced chemical equation represents a chemical reaction with equal numbers of each type of atom on both sides of the equation, adhering to the law of conservation of mass. Balancing equations involves adjusting coefficients to ensure that the number of atoms for each element is the same before and after the reaction. This is essential for accurately depicting the stoichiometry of the reaction and predicting the amounts of products formed.
Recommended video:
Guided course
01:32
Balancing Chemical Equations

Gas Laws and Pressure

Gas laws describe the behavior of gases in relation to pressure, volume, and temperature. In this scenario, the final pressure of 1.00 atm in a 10.0-L vessel indicates the amount of gas produced from the decomposition reactions. Understanding the ideal gas law (PV=nRT) helps in relating the pressure and volume of the gas to the number of moles produced, which is important for calculating the stoichiometry of the reactions.
Recommended video:
Guided course
01:43
Combined Gas Law
Related Practice
Textbook Question
When solid mercury(I) carbonate, Hg2CO3, is added to nitric acid, HNO3, a reaction occurs to give mercury(II) nitrate, Hg1NO322, water, and two gases A and B: Hg2CO31s2 + HNO31aq2¡ Hg1NO3221aq2 + H2O1l 2 + A1g2 + B1g2 (a) When the gases are placed in a 500.0-mL bulb at 20 °C, the pressure is 258 mm Hg. How many moles of gas are present?
593
views
Textbook Question
A mixture of CS21g2 and excess O21g2 is placed in a 10.0-L reaction vessel at 100.0 °C and a pressure of 3.00 atm. A spark causes the CS2 to ignite, burning it completely, according to the equation CS21g2 + 3 O21g2¡CO21g2 + 2 SO21g2 After reaction, the temperature returns to 100.0 °C, and the mixture of product gases (CO2, SO2, and unreacted O2) is found to have a pressure of 2.40 atm. What is the partial pressure of each gas in the product mixture?
416
views
Textbook Question
When 10.0 g of a mixture of Ca1ClO322 and Ca1ClO22 is heated to 700 °C in a 10.0-L vessel, both compounds decompose, forming O21g2 and CaCl21s2. The final pressure inside the vessel is 1.00 atm. (b) What is the mass of each compound in the original mixture?
596
views
Textbook Question
A 5.00-L vessel contains 25.0 g of PCl3 and 3.00 g of O2 at 15 °C. The vessel is heated to 200.0 °C, and the contents react to give POCl3. What is the final pressure in the vessel, assuming that the reaction goes to completion and that all reactants and products are in the gas phase?
749
views
Textbook Question

A steel container with a volume of 500.0 mL is evacuated, and 25.0 g of CaCO3 is added. The container and contents are then heated to 1500 K, causing the CaCO3 to decompose completely, according to the equation CaCO3(s) → CaO(s) + CO2(g). (a) Using the ideal gas law and ignoring the volume of any solids remaining in the container, calculate the pressure inside the container at 1500 K.

433
views
Textbook Question

A steel container with a volume of 500.0 mL is evacuated, and 25.0 g of CaCO3 is added. The container and contents are then heated to 1500 K, causing the CaCO3 to decompose completely, according to the equation CaCO3(s) → CaO(s) + CO2(g). (b) Now make a more accurate calculation of the pressure inside the container. Take into account the volume of solid CaO (density = 3.34 g/mL) in the container, and use the van der Waals equation to calculate the pressure. The van der Waals constants for CO2(g) are a = 3.59 (L2-atm)/mol2 and b = 0.0427 L/mol.

507
views