Chapter 10, Problem 140
A mixture of CS21g2 and excess O21g2 is placed in a 10.0-L reaction vessel at 100.0 °C and a pressure of 3.00 atm. A spark causes the CS2 to ignite, burning it completely, according to the equation CS21g2 + 3 O21g2¡CO21g2 + 2 SO21g2 After reaction, the temperature returns to 100.0 °C, and the mixture of product gases (CO2, SO2, and unreacted O2) is found to have a pressure of 2.40 atm. What is the partial pressure of each gas in the product mixture?
Video transcript
The apparatus shown consists of three temperature-jacketed 1.000-L bulbs connected by stopcocks. Bulb A contains a mixture of H2O(g), CO2(g), and N2(g) at 25 °C and a total pressure of 564 mm Hg. Bulb B is empty and is held at a temperature of -70 °C. Bulb C is also empty and is held at a temperature of -190 °C. The stopcocks are closed, and the volume of the lines connecting the bulbs is zero. CO2 sublimes at -78 °C, and N2 boils at -196 °C.
(a) The stopcock between A and B is opened, and the system is allowed to come to equilibrium. The pressure in A and B is now 219 mm Hg. What do bulbs A and B contain?
The apparatus shown consists of three temperature-jacketed 1.000-L bulbs connected by stopcocks. Bulb A contains a mixture of H2O(g), CO2(g), and N2(g) at 25 °C and a total pressure of 564 mm Hg. Bulb B is empty and is held at a temperature of -70 °C. Bulb C is also empty and is held at a temperature of -190 °C. The stopcocks are closed, and the volume of the lines connecting the bulbs is zero. CO2 sublimes at -78 °C, and N2 boils at -196 °C.
(b) How many moles of H2O are in the system?
When 10.0 g of a mixture of Ca(ClO3)2 and Ca(ClO)2 is heated to 700 °C in a 10.0-L vessel, both compounds decompose, forming O2(g) and CaCl2(s). The final pressure inside the vessel is 1.00 atm. (a) Write balanced equations for the decomposition reactions.