Skip to main content
Ch.10 - Gases: Their Properties & Behavior
Chapter 10, Problem 136

Assume that you take a flask, evacuate it to remove all the air, and find its mass to be 478.1 g. You then fill the flask with argon to a pressure of 2.15 atm and reweigh it. What would the balance read in grams if the flask has a volume of 7.35 L and the temperature is 20.0 °C?

Verified Solution

Video duration:
7m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Ideal Gas Law

The Ideal Gas Law relates the pressure, volume, temperature, and number of moles of a gas through the equation PV = nRT. This law is essential for calculating the amount of gas in a given volume and conditions, allowing us to determine how much argon is present in the flask when it is filled to a specific pressure and temperature.
Recommended video:
Guided course
01:15
Ideal Gas Law Formula

Molar Mass of Argon

Argon is a noble gas with a molar mass of approximately 39.95 g/mol. Knowing the molar mass is crucial for converting the number of moles of argon, calculated from the Ideal Gas Law, into grams, which is necessary for determining the total mass of the flask after it is filled with argon.
Recommended video:
Guided course
02:11
Molar Mass Concept

Mass Measurement and Buoyancy

When measuring the mass of the flask filled with argon, it is important to consider that the balance reads the total mass of the flask plus the gas. The buoyancy effect of the surrounding air is negligible in a vacuum, but understanding how mass is measured in different conditions helps ensure accurate calculations of the final mass after filling the flask.
Recommended video:
Guided course
02:52
Units of Radiation Measurement
Related Practice
Textbook Question
A driver with a nearly empty fuel tank may say she is 'running on fumes.' If a 15.0-gallon automobile gas tank had only gasoline vapor remaining in it, what is the farthest the vehicle could travel if it gets 20.0 miles per gallon on liquid gasoline? Assume the average molar mass of molecules in gasoline is 105 g/mol, the density of liquid gasoline is 0.75 g/mL, the pressure is 743 mm Hg, and the temperature is 25 °C.
630
views
Textbook Question

Pakistan's K2 is the world's second-tallest mountain, with an altitude of 28,251 ft. Its base camp, where climbers stop to acclimate, is located about 16,400 ft above sea level. (a) Approximate atmospheric pressure P at different altitudes is given by the equation P = e-h/7000, where P is in atmospheres and h is the altitude in meters. What is the approximate atmospheric pressure in mm Hg at K2 base camp?

832
views
Textbook Question

Pakistan's K2 is the world's second-tallest mountain, with an altitude of 28,251 ft. Its base camp, where climbers stop to acclimate, is located about 16,400 ft above sea level. (c) Assuming the mole fraction of oxygen in air is 0.2095, what is the partial pressure of oxygen in mm Hg at the summit of K2?

520
views
Textbook Question

The apparatus shown consists of three temperature-jacketed 1.000-L bulbs connected by stopcocks. Bulb A contains a mixture of H2O(g), CO2(g), and N2(g) at 25 °C and a total pressure of 564 mm Hg. Bulb B is empty and is held at a temperature of -70 °C. Bulb C is also empty and is held at a temperature of -190 °C. The stopcocks are closed, and the volume of the lines connecting the bulbs is zero. CO2 sublimes at -78 °C, and N2 boils at -196 °C.

(a) The stopcock between A and B is opened, and the system is allowed to come to equilibrium. The pressure in A and B is now 219 mm Hg. What do bulbs A and B contain?

401
views
Textbook Question

The apparatus shown consists of three temperature-jacketed 1.000-L bulbs connected by stopcocks. Bulb A contains a mixture of H2O(g), CO2(g), and N2(g) at 25 °C and a total pressure of 564 mm Hg. Bulb B is empty and is held at a temperature of -70 °C. Bulb C is also empty and is held at a temperature of -190 °C. The stopcocks are closed, and the volume of the lines connecting the bulbs is zero. CO2 sublimes at -78 °C, and N2 boils at -196 °C.

(b) How many moles of H2O are in the system?

767
views
Textbook Question
When solid mercury(I) carbonate, Hg2CO3, is added to nitric acid, HNO3, a reaction occurs to give mercury(II) nitrate, Hg1NO322, water, and two gases A and B: Hg2CO31s2 + HNO31aq2¡ Hg1NO3221aq2 + H2O1l 2 + A1g2 + B1g2 (a) When the gases are placed in a 500.0-mL bulb at 20 °C, the pressure is 258 mm Hg. How many moles of gas are present?
593
views