Skip to main content
Ch.5 - Thermochemistry
Chapter 5, Problem 108b

Potassium superoxide, KO2, is often used in oxygen masks (such as those used by firefighters) because KO2 reacts with CO2 to release molecular oxygen. Experiments indicate that 2 mol of KO21s2 react with each mole of CO21g2. (b) Indicate the oxidation number for each atom involved in the reaction in part (a). What elements are being oxidized and reduced?

Verified Solution

Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Oxidation States

Oxidation states, or oxidation numbers, are a way to keep track of electrons in chemical reactions. They indicate the degree of oxidation of an atom in a compound, helping to identify which atoms are losing or gaining electrons. In the context of the reaction involving KO2 and CO2, determining the oxidation states of potassium, oxygen, and carbon is essential for identifying the elements that are oxidized and reduced.
Recommended video:
Guided course
02:42
Oxidation Numbers

Redox Reactions

Redox reactions, short for reduction-oxidation reactions, involve the transfer of electrons between two species. In these reactions, one species is oxidized (loses electrons) while another is reduced (gains electrons). Understanding the principles of redox reactions is crucial for analyzing the reaction between KO2 and CO2, as it allows us to determine which elements undergo oxidation and reduction.
Recommended video:
Guided course
03:12
Identifying Redox Reactions

Stoichiometry

Stoichiometry is the calculation of reactants and products in chemical reactions based on the conservation of mass. It involves using balanced chemical equations to determine the proportions of substances involved. In the case of KO2 reacting with CO2, stoichiometry helps to quantify the amounts of each reactant and product, which is important for understanding the overall reaction and its implications in practical applications like oxygen masks.
Recommended video:
Guided course
01:16
Stoichiometry Concept
Related Practice
Textbook Question

Consider a system consisting of the following apparatus, in which gas is confined in one flask and there is a vacuum in the other flask. The flasks are separated by a valve. Assume that the flasks are perfectly insulated and will not allow the flow of heat into or out of the flasks to the surroundings. When the valve is opened, gas flows from the filled flask to the evacuated one. (a) Is work performed during the expansion of the gas? (b) Why or why not?

466
views
Textbook Question

A system consists of a sample of gas contained in a cylinder-and-piston arrangement. It undergoes the change in state shown in the drawing under two different situations: In Case 1, the cylinder and piston are perfect thermal insulators that do not allow heat to be transferred. In Case 2, the cylinder and piston are made up of a thermal conductor such as a metal, and during the state change, the cylinder gets warmer to the touch. Let 𝑞1,𝑤1, and Δ𝐸1 be the values of q, w, and Δ𝐸 for Case 1, and let 𝑞2,𝑤2, and Δ𝐸2 be the values for Case 2. b. What is the sign of 𝑤1?

3
views
Textbook Question

A house is designed to have passive solar energy features. Brickwork incorporated into the interior of the house acts as a heat absorber. Each brick weighs approximately 1.8 kg. The specific heat of the brick is 0.85 J/g•K. How many bricks must be incorporated into the interior of the house to provide the same total heat capacity as 1.7⨉103 gal of water?

1818
views
Textbook Question

A coffee-cup calorimeter of the type shown in Figure 5.18 contains 150.0 g of water at 25.1°C A 121.0-g block of copper metal is heated to 100.4°C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g-K The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.1°C. (a) Determine the amount of heat, in J, lost by the copper block.

808
views
Textbook Question

A coffee-cup calorimeter of the type shown in Figure 5.18 contains 150.0 g of water at 25.1°C A 121.0-g block of copper metal is heated to 100.4°C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g-K The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.1°C (b) Determine the amount of heat gained by the water. The specific heat of water is 4.184 J/1gK.

649
views
1
rank
Textbook Question

A coffee-cup calorimeter of the type shown in Figure 5.18 contains 150.0 g of water at 25.1°C A 121.0-g block of copper metal is heated to 100.4°C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g-K The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.1°C (d) What would be the final temperature of the system if all the heat lost by the copper block were absorbed by the water in the calorimeter?

1200
views
1
comments