Skip to main content
Ch.14 - Chemical Kinetics

Chapter 14, Problem 32a

The react ion between ethyl bromide 1C2H5Br2 and hydroxide ion in ethyl alcohol at 330 K, C2H5Br1alc2 + OH- 1alc2¡ C2H5OH1l2 + Br - 1alc2, is first order each in ethyl bromide and hydroxide ion. When 3C2H5Br4 is 0.0477 M and 3OH- 4 is 0.100 M, the rate of disappearance of ethyl bromide is 1.7 * 10-7 M>s. (a) What is the value of the rate constant?

Verified Solution
Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
412
views
Was this helpful?

Video transcript

Hi everyone is gonna have the reaction of nitric oxide With ozone and 25°C. And the reaction is first order and each of the reactant. And for the rate of disappearance of nitric oxide have 8. non sensitive for Mueller per second. In the concentration of metric outside is 0.15 Moeller. In the concentration of ozone is 0.05-5 Mueller. And whereas calculate the value of the rate constant. So we're gonna use our right law equation. And this is gonna be right equals the rate constant construction of A. The power of X and X. Is the order with respect to a task construction of B. To the white power. And why is the order with respect to be so for our rate, I'm gonna have cake task construction, magic oxide, castigation of ozone. And for the right We're giving 8.54. How sensitive for Mueller per second with constipation right outside Given 0.15 boulder for the cost of ozone We're getting 0.05-5 Moeller. So now if we plug in the values we're gonna have 8.54 sensitive for dollar per second. It was kate Time. solar 0.0525 smaller. 8.54 time sensitive four color per second. It was K. Time. 0. muller squared. So for kate We get 1.08 times 10 - seven. One power come second to next one. Power. Thanks for watching my video. And I hope it was helpful.
Related Practice
Textbook Question

Consider a hypothetical reaction between A, B, and C that is first order in A, zero order in B, and second order in C. (e) By what factor does the rate change when the concentrations of all three reactants are tripled?

1050
views
Textbook Question

The decomposition reaction of N2O5 in carbon tetrachloride is 2 N2O5¡4 NO2 + O2. The rate law is first order in N2O5. At 64 C the rate constant is 4.82 * 10-3 s-1. (a) Write the rate law for the reaction.

3127
views
Textbook Question

Consider the following reaction: 2 NO1g2 + 2 H21g2¡N21g2 + 2 H2O1g2 (d) What is the reaction rate at 1000 K if [NO] is decreased to 0.010 M and 3H24 is increased to 0.030 M?

437
views
Textbook Question

The react ion between ethyl bromide 1C2H5Br2 and hydroxide ion in ethyl alcohol at 330 K, C2H5Br1alc2 + OH- 1alc2¡ C2H5OH1l2 + Br - 1alc2, is first order each in ethyl bromide and hydroxide ion. When 3C2H5Br4 is 0.0477 M and 3OH- 4 is 0.100 M, the rate of disappearance of ethyl bromide is 1.7 * 10-7 M>s. (c) How would the rate of disappearance of ethyl bromide change if the solution were diluted by adding an equal volume of pure ethyl alcohol to the solution?

560
views
1
rank
Textbook Question

The iodide ion reacts with hypochlorite ion (the active ingredient in chlorine bleaches) in the following way: OCl- + I- → OI- + Cl- . This rapid reaction gives the following rate data:

[OCl4-] (M) [I-] (M) Initial Rate (M,s)

1.5 * 10-3 1.5 * 10-3

1.36 * 10-4 3.0 * 10-3 1.5 * 10-3 2.72 * 10-4

1.5 * 10-3 3.0 * 10-3 2.72 * 10-4

(a) Write the rate law for this reaction.

1867
views
Textbook Question

The iodide ion reacts with hypochlorite ion (the active ingredient in chlorine bleaches) in the following way: OCl - + I - ¡OI - + Cl - . This rapid reaction gives the following rate data:

[OCl4-] (M) [I-] (M) Initial Rate (M,s)

1.5 * 10-3 1.5 * 10-3

1.36 * 10-4 3.0 * 10-3 1.5 * 10-3 2.72 * 10-4

1.5 * 10-3 3.0 * 10-3 2.72 * 10-4

(b) Calculate the rate constant with proper units.

386
views