Chapter 14, Problem 39a
(a) For the generic reaction A S B what quantity, when graphed versus time, will yield a straight line for a first-order reaction?
Video transcript
The following data were measured for the reaction
(c) Calculate the rate constant with proper units?
Consider the gas-phase reaction between nitric oxide and bromine at 273 C: 2 NO1g2 + Br21g2¡2 NOBr1g2. The following data for the initial rate of appearance of NOBr were obtained: Experiment 3no4 1M 2 3br2 4 1M 2 Initial Rate 1M,s2 1 0.10 0.20 24 2 0.25 0.20 150 3 0.10 0.50 60 4 0.35 0.50 735 (b) Calculate the average value of the rate constant for the appearance of NOBr from the four data sets.
Consider the reaction of peroxydisulfate ion 1S2O82-2 with iodide ion 1I - 2 in aqueous solution: S2O8 2 - 1aq2 + 3 I - 1aq2¡2 SO42 - 1aq2 + I3- 1aq2 At a particular temperature, the initial rate of disappearance of S2O82 - varies with reactant concentrations in the following manner: Experiment 3S2o8 24 1M 2 3I4 1M 2 Initial Rate 1M,s2 1 0.018 0.036 2.6 * 10-6 2 0.027 0.036 3.9 * 10-6 3 0.036 0.054 7.8 * 10-6 4 0.050 0.072 1.4 * 10-5 (a) Determine the rate law for the reaction and state the units of the rate constant.
(a) The gas-phase decomposition of SO2Cl2, SO2Cl21g2 ¡SO21g2 + Cl21g2, is first order in SO2Cl2. At 600 K the half-life for this process is 2.3 * 105 s. What is the rate constant at this temperature?
As described in Exercise 14.41, the decomposition of sulfuryl chloride 1SO2Cl22 is a first-order process. The rate constant for the decomposition at 660 K is 4.5 * 10-2 s-1. (b) At what time will the partial pressure of SO2Cl2 decline to one-tenth its initial value?
The first-order rate constant for the decomposition of N2O5, 2 N2O51g2¡4 NO21g2 + O21g2, a t 70 C i s 6.82 * 10-3 s-1. Suppose we start with 0.0250 mol of N2O51g2 in a volume of 2.0 L. (a) How many moles of N2O5 will remain after 5.0 min?