Skip to main content
Ch.9 - Molecular Geometry and Bonding Theories

Chapter 9, Problem 112a

The energy-level diagram in Figure 9.36 shows that the sideways overlap of a pair of p orbitals produces two molecular orbitals, one bonding and one antibonding. In ethylene there is a pair of electrons in the bonding π orbital between the two carbons. Absorption of a photon of the appropriate wavelength can result in promotion of one of the bonding electrons from the p2p to the p*2p molecular orbital. (a) Assuming this electronic transition corresponds to the HOMO-LUMO transition, what is the HOMO in ethylene?

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
546
views
Was this helpful?

Video transcript

Once we have the overlap of 21 s. Atomic orbital and hydrogen. And this results in the formation of two molecular orbital one binding orbital which is sigma one S one anti bonding orbital which is sigma star one S. We have an electron getting excited from the bonding molecular orbital to the anti bonding molecular orbital. We're gonna assume that this transition is a home alarm. A transition were asked to identify the limo in hydrogen. We call that homo is the highest occupied or like your orbital and lou mo is the lowest unoccupied. I'm liking it. This is the electron is going from the bonding molecular orbital to the anti bonding molecular orbital. This means it's falling from sigma one S. To see my start. One S. This transition is gone from the humble state to the limo state. The limo Is Sigma Star one. S Thanks for watching my video and I hope it was helpful.
Related Practice
Textbook Question

Azo dyes are organic dyes that are used for many applications, such as the coloring of fabrics. Many azo dyes are derivatives of the organic substance azobenzene, C12H10N2. A closely related substance is hydrazobenzene, C12H12N2. The Lewis structures of these two substances are

(Recall the shorthand notation used for benzene.) (c) Predict the N¬N¬C angles in each of the substances.

513
views
Textbook Question
a) Using only the valence atomic orbitals of a hydrogen atom and a fluorine atom, and following the model of Figure 9.46, how many MOs would you expect for the HF molecule?

647
views
Textbook Question

Carbon monoxide, CO, is isoelectronic to N2. (d) Would you expect the p2p MOs of CO to have equal atomic orbital contributions from the C and O atoms? If not, which atom would have the greater contribution?

1217
views
Textbook Question

The energy-level diagram in Figure 9.36 shows that the sideways overlap of a pair of p orbitals produces two molecular orbitals, one bonding and one antibonding. In ethylene there is a pair of electrons in the bonding π orbital between the two carbons. Absorption of a photon of the appropriate wavelength can result in promotion of one of the bonding electrons from the p2p to the p*2p molecular orbital. (b) Assuming this electronic transition corresponds to the HOMO-LUMO transition, what is the LUMO in ethylene?

485
views
Textbook Question

The energy-level diagram in Figure 9.36 shows that the sideways overlap of a pair of p orbitals produces two molecular orbitals, one bonding and one antibonding. In ethylene there is a pair of electrons in the bonding π orbital between the two carbons. Absorption of a photon of the appropriate wavelength can result in promotion of one of the bonding electrons from the p2p to the p*2p molecular orbital. (c) Is the C¬C bond in ethylene stronger or weaker in the excited state than in the ground state? Why?

510
views
Textbook Question

Sulfur tetrafluoride 1SF42 reacts slowly with O2 to form sulfur tetrafluoride monoxide 1OSF42 according to the following unbalanced reaction: SF41g2 + O21g2¡OSF41g2 The O atom and the four F atoms in OSF4 are bonded to a central S atom. (a) Balance the equation.

907
views