Skip to main content
Ch.5 - Thermochemistry

Chapter 5, Problem 119a

Suppose an Olympic diver who weighs 52.0 kg executes a straight dive from a 10-m platform. At the apex of the dive, the diver is 10.8 m above the surface of the water. (a) What is the potential energy of the diver at the apex of the dive, relative to the surface of the water?

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
405
views
Was this helpful?

Video transcript

Hi everyone here we have a question asking us to determine the potential energy of a kg swimmer at the apex of his dive from an 8.0 m platform. If the apex of the dive is 8.6 m relative to the surface of the water. So we're going to use the formula. Potential energy equals mass times the acceleration due to gravity times our distance. So our potential energy Will equal 48 kilograms Times 9.8 meters per second squared Times 8.6 meters, And that equals 45 0. kilograms times meter squared times inverse seconds. And that is equal to 0.44 jules. And if we want to put that into scientific notation, We will move the decimal .1, 2, 3 places to the lift. So that would give us 4.0 times 10 To the 3rd jewels. And that is our final answer. Thank you for watching. Bye.
Related Practice
Textbook Question

A 201-lb man decides to add to his exercise routine by walking up three flights of stairs (45 ft) 20 times per day. Hefigures that theworkrequired to increasehis potential energy in this way will permit him to eat an extra order of French fries, at 245 Cal, without adding to his weight. Is he correct in this assumption?

357
views
Textbook Question

Sucrose (C12H22O11) is produced by plants as follows: 12 CO2(g) + 11 H2O(l) → C12H22O11 + 12 O2(g) H = 5645 kJ About 4.8 g of sucrose is produced per day per square meter of the earth's surface. The energy for this endothermic reaction is supplied by the sunlight. About 0.1 % of the sunlight that reaches the earth is used to produce sucrose. Calculate the total energy the sun supplies for each square meter of surface area. Give your answer in kilowatts per square meter 1kW/m2 where 1W = 1 J/s2.

833
views
Textbook Question

At 20 °C (approximately room temperature) the average velocity of N2 molecules in air is 1050 mph. (b) What is the kinetic energy (in J) of an N2 molecule moving at this speed?

1356
views
1
comments
Textbook Question

Suppose an Olympic diver who weighs 52.0 kg executes a straight dive from a 10-m platform. At the apex of the dive, the diver is 10.8 m above the surface of the water. (b) Assuming that all the potential energy of the diver is converted into kinetic energy at the surface of the water, at what speed, in m>s, will the diver enter the water?

591
views
Textbook Question
Consider the following acid-neutralization reactions involving the strong base NaOH(aq): HNO31aq2 + NaOH1aq2¡NaNO31aq2 + H2O1l2 HCl1aq2 + NaOH1aq2¡NaCl1aq2 + H2O1l2 NH4+1aq2 + NaOH1aq2¡NH31aq2 + Na+1aq2 + H2O1l2 (d) In the third equation NH4 +1aq2 is acting as an acid. Based on the value of H° for this reaction, do you think it is a strong or a weak acid? Explain.
738
views
Textbook Question

Consider two solutions, the first being 50.0 mL of 1.00 M CuSO4 and the second 50.0 mL of 2.00 M KOH. When the two solutions are mixed in a constant-pressure calorimeter, a precipitate forms and the temperature of the mixture rises from 21.5 to 27.7 °C. (a) Before mixing, how many grams of Cu are present in the solution of CuSO4?

980
views