Skip to main content
Ch.3 - Chemical Reactions and Reaction Stoichiometry
Chapter 3, Problem 102

When hydrocarbons are burned in a limited amount of air, both CO and CO2 form. When 0.450 g of a particular hydrocarbon was burned in air, 0.467 g of CO, 0.733 g of CO2, and 0.450 g of H2O were formed. (a) What is the empirical formula of the compound? (b) How many grams of O2 were used in the reaction? (c) How many grams would have been required for complete combustion?

Verified step by step guidance
1
Step 1: Determine the moles of CO and CO2 produced. Use the molar masses of CO (28.01 g/mol) and CO2 (44.01 g/mol) to convert the given masses to moles.
Step 2: Calculate the total moles of carbon atoms in the products. Since each mole of CO and CO2 contains one mole of carbon, add the moles of carbon from CO and CO2.
Step 3: Determine the moles of H2O produced. Use the molar mass of H2O (18.02 g/mol) to convert the given mass to moles. Each mole of H2O contains two moles of hydrogen atoms.
Step 4: Calculate the empirical formula. Use the moles of carbon and hydrogen obtained from the products to find the simplest whole number ratio of carbon to hydrogen in the hydrocarbon.
Step 5: Calculate the moles of oxygen used. Use the stoichiometry of the reaction to determine the moles of O2 consumed, considering the moles of CO, CO2, and H2O produced.
Related Practice
Textbook Question

A method used by the U.S. Environmental Protection Agency (EPA) for determining the concentration of ozone in air is to pass the air sample through a 'bubbler' containing sodium iodide, which removes the ozone according to the following equation: O31g2 + 2 NaI1aq2 + H2O1l2¡ O21g2 + I21s2 + 2 NaOH1aq2 (a) How many moles of sodium iodide are needed to remove 5.95 * 10-6 mol of O3?

414
views
Textbook Question

A method used by the U.S. Environmental Protection Agency (EPA) for determining the concentration of ozone in air is to pass the air sample through a 'bubbler' containing sodium iodide, which removes the ozone according to the following equation: O31g2 + 2 NaI1aq2 + H2O1l2¡ O21g2 + I21s2 + 2 NaOH1aq2 (b) How many grams of sodium iodide are needed to remove 1.3 mg of O3?

536
views
Textbook Question

The fat stored in a camel's hump is a source of both energy and water. Calculate the mass of H2O produced by the metabolism of 1.0 kg of fat, assuming the fat consists entirely of tristearin 1C57H110O62, a typical animal fat, and assuming that during metabolism, tristearin reacts with O2 to form only CO2 and H2O.

1479
views
Textbook Question

A mixture of N21g2 and H21g2 reacts in a closed container to form ammonia, NH31g2. The reaction ceases before either reactant has been totally consumed. At this stage 3.0 mol N2, 3.0 mol H2, and 3.0 mol NH3 are present. How many moles of N2 and H2 were present originally?

977
views
Textbook Question

A mixture containing KClO3, K2CO3, KHCO3, and KCl was heated, producing CO2, O2, and H2O gases according to the following equations: 2 KClO31s2¡2 KCl1s2 + 3 O21g2 2 KHCO31s2¡K2O1s2 + H2O1g2 + 2 CO21g2 K2CO31s2¡K2O1s2 + CO21g2 The KCl does not react under the conditions of the reaction. If 100.0 g of the mixture produces 1.80 g of H2O, 13.20 g of CO2, and 4.00 g of O2, what was the composition of the original mixture? (Assume complete decomposition of the mixture.) How many grams of K2CO3 were in the original mixture?

1324
views
Open Question
Boron nitride, BN, is an electrical insulator with remarkable thermal and chemical stability. Its density is 2.1 g/cm3. It can be made by reacting boric acid, H3BO3, with ammonia. The other product of the reaction is water. (b) If you made 225 g of boric acid react with 150 g of ammonia, what mass of BN could you make? (d) One application of BN is as a thin film for electrical insulation. If you take the mass of BN from part (b) and make a 0.4 mm thin film from it, what area, in cm2, would it cover?