Skip to main content
Ch.3 - Chemical Reactions and Reaction Stoichiometry
Chapter 3, Problem 112

A 3.50 g of an alloy which contains only lead and tin is dissolved in hot HNO3. Excess sulfuric acid is added to this solution and 1.57g of PbSO4(s) is obtained. (b) Assuming all the lead in the alloy reacted to form PbSO4, what was the amount, in grams, of lead and tin in the alloy respectively?

Verified step by step guidance
1
Identify the chemical reaction: Lead (Pb) reacts with sulfuric acid (H2SO4) to form lead sulfate (PbSO4).
Use the mass of PbSO4 obtained (1.57 g) to calculate the moles of PbSO4 using its molar mass.
Since the stoichiometry of the reaction is 1:1, the moles of PbSO4 will be equal to the moles of Pb in the alloy.
Convert the moles of Pb to grams using the molar mass of lead.
Subtract the mass of lead from the total mass of the alloy to find the mass of tin.

Verified Solution

Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Stoichiometry

Stoichiometry is the calculation of reactants and products in chemical reactions based on the conservation of mass. It involves using balanced chemical equations to determine the relationships between the amounts of substances consumed and produced. In this question, stoichiometry is essential for relating the mass of PbSO4 produced to the mass of lead in the original alloy.
Recommended video:
Guided course
01:16
Stoichiometry Concept

Molar Mass

Molar mass is the mass of one mole of a substance, typically expressed in grams per mole (g/mol). It is crucial for converting between the mass of a substance and the number of moles, which allows for stoichiometric calculations. For this problem, knowing the molar masses of lead (Pb) and tin (Sn) will help determine the amounts of each metal in the alloy.
Recommended video:
Guided course
02:11
Molar Mass Concept

Chemical Reactions and Precipitation

Chemical reactions involve the transformation of reactants into products, and precipitation occurs when a solid forms from a solution. In this scenario, the formation of PbSO4 as a precipitate indicates that lead from the alloy reacted with sulfate ions. Understanding this process is key to determining how much lead was present in the original alloy based on the mass of the precipitate formed.
Recommended video:
Guided course
01:53
Selective Precipitation
Related Practice
Textbook Question

(b) Because atoms are spherical, they cannot occupy all of the space of the cube. The silver atoms pack in the solid in such a way that 74% of the volume of the solid is actually filled with the silver atoms. Calculate the volume of a single silver atom.

Textbook Question

Burning acetylene in oxygen can produce three different carbon-containing products: soot (very fine particles of graphite), CO(g), and CO2(g). (c) Why, when the oxygen supply is adequate, is CO2(g) the predominant carbon-containing product of the combustion of acetylene?

1216
views
Open Question
Section 2.9 introduced the idea of structural isomerism, with 1-propanol and 2-propanol as examples. Determine which of these properties would distinguish these two substances: (a) boiling point, (b) combustion analysis results, (c) molecular weight, (d) density at a given temperature and pressure. You can check on the properties of these two compounds in Wolfram Alpha (http://www.wolframalpha.com/) or the CRC Handbook of Chemistry and Physics.
Textbook Question

Hydrogen cyanide, HCN, is a poisonous gas. The lethal dose is approximately 300 mg HCN per kilogram of air when inhaled. (a) Calculate the amount of HCN that gives the lethal dose in a small laboratory room measuring 3.5 × 4.5 × 2.5 m. The density of air at 26 °C is 0.00118 g/cm3. (b) If the HCN is formed by reaction of NaCN with an acid such as H2SO4, what mass of NaCN gives the lethal dose in the room? 2 NaCN(s) + H2SO4(aq) → Na2SO4(aq) + 2 HCN(g)

1533
views
Textbook Question

Hydrogen cyanide, HCN, is a poisonous gas. The lethal dose is approximately 300 mg HCN per kilogram of air when inhaled. (c) HCN forms when synthetic fibers containing Orlon® or Acrilan ® burn. Acrilan® has an empirical formula of CH2CHCN, so HCN is 50.9% of the formula by mass. A rug measures 3.5 × 4.5 m and contains 850 g of Acrilan® fibers per square yard of carpet. If the rug burns, will a lethal dose of HCN be generated in the room? Assume that the yield of HCN from the fibers is 20% and that the carpet is 50% consumed.

1268
views
Textbook Question

The source of oxygen that drives the internal combustion engine in an automobile is air. Air is a mixture of gases, principally N2(79%) and O2(20%). In the cylinder of an automobile engine, nitrogen can react with oxygen to produce nitric oxide gas, NO. As NO is emitted from the tailpipe of the car, it can react with more oxygen to produce nitrogen dioxide gas. (a) Write balanced chemical equations for both reactions.