It has been suggested that strontium-90 (generated by nuclear testing) deposited in the hot desert will undergo radioactive decay more rapidly because it will be exposed to much higher average temperatures. (a) Is this a reasonable suggestion? (Section 14.5) (b) Does the process of radioactive decay have an activation energy, like the Arrhenius behavior of many chemical reactions (Section 14.5)?

Some watch dials are coated with a phosphor, like ZnS, and a polymer in which some of the 1H atoms have been replaced by 3H atoms, tritium. The phosphor emits light when struck by the beta particle from the tritium decay, causing the dials to glow in the dark. The half-life of tritium is 12.3 yr. If the light given off is assumed to be directly proportional to the amount of tritium, by how much will a dial be dimmed in a watch that is 50 yr old?
It takes 4 h 39 min for a 2.00-mg sample of radium-230 to decay to 0.25 mg. What is the half-life of radium-230?
Cobalt-60 is a strong gamma emitter that has a half-life of 5.26 yr. The cobalt-60 in a radiotherapy unit must be replaced when its radioactivity falls to 75% of the original sample. If an original sample was purchased in June 2016, when will it be necessary to replace the cobalt-60?