Skip to main content
Ch.20 - Electrochemistry
Chapter 20, Problem 78d

In some applications nickel–cadmium batteries have been replaced by nickel–zinc batteries. The overall cell reaction for this relatively new battery is: 2 H2O1l2 + 2 NiO1OH21s2 + Zn1s2 ¡ 2 Ni1OH221s2 + Zn1OH221s2 (d) Would you expect the specific energy density of a nickel–zinc battery to be higher or lower than that of a nickel–cadmium battery?

Verified Solution

Video duration:
7m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Specific Energy Density

Specific energy density refers to the amount of energy stored in a battery per unit mass, typically expressed in watt-hours per kilogram (Wh/kg). It is a crucial metric for evaluating battery performance, as higher specific energy density indicates a battery can store more energy for a given weight, making it more efficient for applications requiring lightweight power sources.
Recommended video:
Guided course
01:56
Density Concepts

Electrochemical Reactions

Electrochemical reactions involve the transfer of electrons between chemical species, which occurs in batteries during discharge and charge cycles. Understanding the half-reactions and overall cell reactions, such as those in nickel–zinc and nickel–cadmium batteries, is essential for comparing their energy outputs and efficiencies, as these reactions dictate the voltage and capacity of the batteries.
Recommended video:
Guided course
02:46
Electrochemical Cells

Battery Chemistry

Battery chemistry refers to the materials and reactions that occur within a battery, influencing its performance characteristics. Nickel–cadmium (NiCd) and nickel–zinc (NiZn) batteries utilize different chemical components, which affect their energy density, cycle life, and environmental impact. Analyzing these differences helps in understanding why one battery type may outperform another in specific applications.
Recommended video:
Guided course
00:58
Chemistry Gas Laws
Related Practice
Textbook Question

Heart pacemakers are often powered by lithium–silver chromate 'button' batteries. The overall cell reaction is 2 Li1s2 + Ag2CrO41s2 ¡ Li2CrO41s2 + 2 Ag1s2 (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode?

438
views
Textbook Question

Heart pacemakers are often powered by lithium–silver chromate 'button' batteries. The overall cell reaction is 2 Li1s2 + Ag2CrO41s2 ¡ Li2CrO41s2 + 2 Ag1s2 (b) Choose the two half-reactions from Appendix E that most closely approximate the reactions that occur in the battery. What standard emf would be generated by a voltaic cell based on these half-reactions?

840
views
Textbook Question

In some applications nickel–cadmium batteries have been replaced by nickel–zinc batteries. The overall cell reaction for this relatively new battery is: 2 H2O1l2 + 2 NiO1OH21s2 + Zn1s2 ¡ 2 Ni1OH221s2 + Zn1OH221s2 (b)What is the anode half-reaction?

622
views
Textbook Question

Li-ion batteries used in automobiles typically use a LiMn2O4 cathode in place of the LiCoO2 cathode found in most Li-ion batteries. (a) Calculate the mass percent lithium in each electrode material.

712
views
Textbook Question

Li-ion batteries used in automobiles typically use a LiMn2O4 cathode in place of the LiCoO2 cathode found in most Li-ion batteries. (b) Which material has a higher percentage of lithium? Does this help to explain why batteries made with LiMn2O4 cathodes deliver less power on discharging?

346
views
Textbook Question

Li-ion batteries used in automobiles typically use a LiMn2O4 cathode in place of the LiCoO2 cathode found in most Li-ion batteries. (c) In a battery that uses a LiCoO2 cathode, approximately 50% of the lithium migrates from the cathode to the anode on charging. In a battery that uses a LiMn2O4 cathode, what fraction of the lithium in LiMn2O4 would need to migrate out of the cathode to deliver the same amount of lithium to the graphite anode?

415
views