Skip to main content
Ch.16 - Acid-Base Equilibria
Chapter 16, Problem 112

The following observations are made about a diprotic acid H2A: (i) A 0.10 M solution of H2A has pH = 3.30. (ii) A 0.10 M solution of the salt NaHA is acidic. Which of the following could be the value of pKa2 for H2A: (i) 3.22, (ii) 5.30, (iii) 7.47, or (iv) 9.82?

Verified Solution

Video duration:
8m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Diprotic Acids

Diprotic acids are acids that can donate two protons (H⁺ ions) per molecule in a solution. They undergo two dissociation steps, each characterized by its own acid dissociation constant (Ka). Understanding the behavior of diprotic acids is crucial for predicting their pH and the resulting equilibrium in solution.
Recommended video:
Guided course
04:41
3 forms of Diprotic Acids

pH and pKa Relationship

The pH of a solution is a measure of its acidity, defined as the negative logarithm of the hydrogen ion concentration. The pKa is the negative logarithm of the acid dissociation constant (Ka) and indicates the strength of an acid; lower pKa values correspond to stronger acids. The relationship between pH and pKa helps determine the degree of ionization of the acid in solution.
Recommended video:
Guided course
02:09
pH and pOH Calculations

Salt Hydrolysis

When a salt of a weak acid is dissolved in water, it can undergo hydrolysis, affecting the pH of the solution. In this case, NaHA, the salt of the weak acid H2A, can release H⁺ ions, making the solution acidic. Understanding how salts interact with water is essential for predicting the pH of solutions containing weak acids and their salts.
Recommended video:
Related Practice
Textbook Question

Butyric acid is responsible for the foul smell of rancid butter. The pKa of butyric acid is 4.84. (b) Calculate the pH of a 0.050 M solution of butyric acid.

905
views
1
rank
Textbook Question

Butyric acid is responsible for the foul smell of rancid butter. The pKa of butyric acid is 4.84. (c) Calculate the pH of a 0.050 M solution of sodium butyrate.

1125
views
Textbook Question
Ritalin is the trade name of a drug, methylphenidate, used to treat attention-deficit/hyperactivity disorder in young adults. The chemical structure of methylphenidate is

(a) Is Ritalin an acid or a base? An electrolyte or a nonelectrolyte?
862
views
Textbook Question

The amino acid glycine 1H2N¬CH2¬COOH2 can participate in the following equilibria in water: H2N¬CH2¬COOH + H2OΔ H2N¬CH2¬COO- + H3O+ Ka = 4.3 * 10-3 H2N¬CH2¬COOH + H2OΔ+H3N¬CH2¬COOH + OH- Kb = 6.0 * 10-5 (a) Use the values of Ka and Kb to estimate the equilibrium constant for the intramolecular proton transfer to form a zwitterion: H2N¬CH2¬COOH Δ +H3N¬CH2¬COO-

886
views
Textbook Question

The amino acid glycine 1H2N¬CH2¬COOH2 can participate in the following equilibria in water: H2N¬CH2¬COOH + H2OΔ H2N¬CH2¬COO- + H3O+ Ka = 4.3 * 10-3 H2N¬CH2¬COOH + H2OΔ+H3N¬CH2¬COOH + OH- Kb = 6.0 * 10-5 (b) What is the pH of a 0.050 M aqueous solution of glycine?

466
views
Textbook Question
The volume of an adult's stomach ranges from about 50 mL when empty to 1 L when full. If the stomach volume is 400 mL and its contents have a pH of 2, how many moles of H+ does the stomach contain? Assuming that all the H+ comes from HCl, how many grams of sodium hydrogen carbonate will totally neutralize the stomach acid?
1108
views