Skip to main content
Ch.15 - Chemical Equilibrium
Chapter 15, Problem 33a

The equilibrium 2 NO(𝑔) + Cl2(𝑔) β‡Œ 2 NOCl(𝑔) is established at 500.0 K. An equilibrium mixture of the three gases has partial pressures of 0.095 atm, 0.171 atm, and 0.28 atm for NO, Cl2, and NOCl, respectively. (a) Calculate 𝐾𝑝 for this reaction at 500.0 K.

Verified Solution

Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Chemical Equilibrium

Chemical equilibrium occurs when the rates of the forward and reverse reactions are equal, resulting in constant concentrations of reactants and products. In this state, the system is dynamic, meaning that reactions continue to occur, but there is no net change in the concentrations of the substances involved.
Recommended video:
Guided course
04:21
Chemical Equilibrium Concepts

Equilibrium Constant (Kp)

The equilibrium constant, Kp, is a numerical value that expresses the ratio of the partial pressures of the products to the partial pressures of the reactants at equilibrium, each raised to the power of their coefficients in the balanced equation. For the reaction 2 NO(g) + Cl2(g) β‡Œ 2 NOCl(g), Kp is calculated using the formula Kp = (P_NOCl^2) / (P_NO^2 * P_Cl2), where P represents the partial pressures of the gases.
Recommended video:
Guided course
03:20
Equilibrium Constant Expressions

Partial Pressure

Partial pressure is the pressure exerted by a single component of a gas mixture. According to Dalton's Law of Partial Pressures, the total pressure of a gas mixture is the sum of the partial pressures of each individual gas. In equilibrium calculations, knowing the partial pressures of each gas allows for the determination of the equilibrium constant.
Recommended video:
Guided course
00:48
Partial Pressure Calculation
Related Practice
Textbook Question

Consider the following equilibrium, for which 𝐾𝑝 = 0.0752 at 480Β°C: 2 Cl2(𝑔) + 2 H2O(𝑔) β‡Œ 4 HCl(𝑔) + O2(𝑔) (a) What is the value of 𝐾𝑝 for the reaction 4 HCl(𝑔) + O2(𝑔) β‡Œ 2 Cl2(𝑔) + 2 H2O(𝑔)?

1045
views
Textbook Question

The following equilibria were attained at 823 K:

CoO(s) + H2(g) β†’ Co(s) + H2O(g) Kc = 67

CoO(s) + CO(g) β†’ Co(s) + CO2(g) Kc = 490

Based on these equilibria, calculate the equilibrium constant for H2(g) + CO2(g) β†’ CO(g) + H2O(g) at 823 K.

126
views
Textbook Question

Consider the equilibrium N2(𝑔) + O2(𝑔) + Br2(𝑔) β‡Œ 2 NOBr(𝑔) Calculate the equilibrium constant 𝐾𝑝 for this reaction, given the following information at 298 K:

2 NO(𝑔) + Br2(𝑔) β‡Œ 2 NOBr(𝑔) 𝐾𝑐 = 2.02

NO(𝑔) β‡Œ N2(𝑔) + O2(𝑔) 𝐾𝑐 = 2.1Γ—1030

989
views
Textbook Question

The equilibrium 2 NO(𝑔) + Cl2(𝑔) β‡Œ 2 NOCl(𝑔) is established at 500.0 K. An equilibrium mixture of the three gases has partial pressures of 0.095 atm, 0.171 atm, and 0.28 atm for NO, Cl2, and NOCl, respectively. (b) If the vessel has a volume of 5.00 L, calculate Kc at this temperature.

932
views
1
comments
Textbook Question

Phosphorus trichloride gas and chlorine gas react to form phosphorus pentachloride gas: PCl3(𝑔) + Cl2(𝑔) β‡Œ PCl5(𝑔). A 7.5-L gas vessel is charged with a mixture of PCl3(𝑔) and Cl2(𝑔), which is allowed to equilibrate at 450 K. At equilibrium the partial pressures of the three gases are 𝑃PCl3 = 0.124 atm, 𝑃Cl2 = 0.157 atm, and 𝑃PCl5 = 1.30 atm. (a) What is the value of 𝐾𝑝 at this temperature?

1357
views
Textbook Question

A mixture of 0.2000 mol of CO2, 0.1000 mol of H2, and 0.1600 mol of H2O is placed in a 2.000-L vessel. The following equilibrium is established at 500 K: CO2(𝑔) + H2(𝑔) β‡Œ CO(𝑔) + H2O (𝑔) (d) Calculate 𝐾𝑐 for the reaction.

1565
views