Skip to main content
Ch.14 - Chemical Kinetics

Chapter 14, Problem 89c

Consider the reaction A + B → C + D. Is each of the following statements true or false? (c) If the reaction is an elementary reaction, the rate law of the reverse reaction is first order.

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
775
views
Was this helpful?

Video transcript

Hello everyone today you're being given. The following problem is the following statement true or false. For this reaction X plus Y gives A plus B. The rate law for the reverse reaction is second order, if the reaction is elementary. So if this reaction, since this reaction is elementary three law is going to be based on a molecular charity of the reaction, so we have this regular forward reaction and so the reverse reaction would simply be A plus B gives us X plus Y. And so the rate would be equal to K which is some constant times the concentration of our A times the concentration of our being. And so the rate law for both A and B are first order. Therefore, overall, the rate law is second order. So overall this is second order. So with that, this statement is true and with that, we've answered the question overall, I hope this helped and until next time.
Related Practice
Textbook Question

The activation energy of an uncatalyzed reaction is 95 kJ/mol. The addition of a catalyst lowers the activation energy to 55 kJ/mol. Assuming that the collision factor remains the same, by what factor will the catalyst increase the rate of the reaction at (a) 25 C

4095
views
1
rank
Textbook Question

The activation energy of an uncatalyzed reaction is 95 kJ/mol. The addition of a catalyst lowers the activation energy to 55 kJ/mol. Assuming that the collision factor remains the same, by what factor will the catalyst increase the rate of the reaction at (b) 125 °C?

1218
views
Textbook Question

Consider the reaction A + B → C + D. Is each of the following statements true or false? (b) If the reaction is an elementary reaction, the rate law is second order.

373
views
Textbook Question

The reaction 2 NO(g) + O2(g) → 2 NO2 (g) is second order in NO and first order in O2. When [NO] = 0.040 M, and 3O24 = 0.035 M, the observed rate of disappearance of NO is 9.3⨉10-5 M/s. (b) What is the value of the rate constant?

403
views
Textbook Question

The reaction 2 NO(g) + O2(g) → 2 NO2 (g) is second order in NO and first order in O2. When [NO] = 0.040 M, and 3O24 = 0.035 M, the observed rate of disappearance of NO is 9.3⨉10-5 M/s. (c) What are the units of the rate constant?

735
views
Textbook Question

Consider the following reaction between mercury(II) chloride and oxalate ion: 2 HgCl21aq2 + C2O4 2 - 1aq2¡2 Cl - 1aq2 + 2 CO21g2 + Hg2Cl21s2 The initial rate of this reaction was determined for several concentrations of HgCl2 and C2O4 2 -, and the following rate data were obtained for the rate of disappearance of C2O4 2 - : Experiment 3HgCl2 4 1M 2 3C2o4 24 1M 2 Rate 1M,s2 1 0.164 0.15 3.2 * 10-5 2 0.164 0.45 2.9 * 10-4 3 0.082 0.45 1.4 * 10-4 4 0.246 0.15 4.8 * 10-5 (c) What is the reaction rate when the initial concentration of HgCl2 is 0.100 M and that of C2O4 2- is 0.25 M if the temperature is the same as that used to obtain the data shown?

1289
views