Chapter 14, Problem 20c
A flask is charged with 0.100 mol of A and allowed to react to form B according to the hypothetical gas-phase reaction A1g2¡B1g2. The following data are collected: Time (s) 0 40 80 120 160 Moles of A 0.100 0.067 0.045 0.030 0.020 (c) Which of the following would be needed to calculate the rate in units of concentration per time: (i) the pressure of the gas at each time, (ii) the volume of the reaction flask, (iii) the temperature, or (iv) the molecular weight of A?
Video transcript
(c) As a reaction proceeds, does the instantaneous reaction rate increase or decrease?
Consider the following hypothetical aqueous reaction: A1aq2S B1aq2. A flask is charged with 0.065 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) 0 10 20 30 40 Moles of A 0.065 0.051 0.042 0.036 0.031 (a) Calculate the number of moles of B at each time in the table, assuming that there are no molecules of B at time zero and that A cleanly converts to B with no intermediates.
Consider the following hypothetical aqueous reaction: A1aq2S B1aq2. A flask is charged with 0.065 mol of A in a total volume of 100.0 mL. The following data are collected: Time (min) 0 10 20 30 40 Moles of A 0.065 0.051 0.042 0.036 0.031 (b) Calculate the average rate of disappearance of A for each 10-min interval in units of M>s.
The isomerization of methyl isonitrile 1CH3NC2 to acetonitrile 1CH3CN2 was studied in the gas phase at 215 C, and the following data were obtained: Time (s) 3CH3nC4 1M2 0 0.0165 2000 0.0110 5000 0.00591 8000 0.00314 12,000 0.00137 15,000 0.00074 (b) Calculate the average rate of reaction over the entire time of the data from t = 0 to t = 15,000 s.
The isomerization of methyl isonitrile 1CH3NC2 to acetonitrile 1CH3CN2 was studied in the gas phase at 215 C, and the following data were obtained: Time (s) 3CH3nC4 1M2 0 0.0165 2000 0.0110 5000 0.00591 8000 0.00314 12,000 0.00137 15,000 0.00074 (d) Graph 3CH3NC4 versus time and determine the instantaneous rates in M>s at t = 5000 s and t = 8000 s.
The rate of disappearance of HCl was measured for the following reaction: CH3OH1aq2 + HCl1aq2¡CH3Cl1aq2 + H2O1l2 The following data were collected: Time (min) 3HCl 4 1M2 0.0 1.85 54.0 1.58 107.0 1.36 215.0 1.02 430.0 0.580 (a) Calculate the average rate of reaction, in M>s, for the time interval between each measurement.