Skip to main content
Ch.10 - Gases
Chapter 10, Problem 105

Consider the arrangement of bulbs shown in the drawing. Each of the bulbs contains a gas at the pressure shown. What is the pressure of the system when all the stopcocks are opened, assuming that the temperature remains constant? (We can neglect the volume of the capillary tubing connecting the bulbs.)
Diagram of gas bulbs showing pressures and volumes for O2, Ne, and He in a chemistry experiment.

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Ideal Gas Law

The Ideal Gas Law relates the pressure, volume, temperature, and number of moles of a gas through the equation PV = nRT. In this scenario, since the temperature is constant and the gases are mixed, the law helps predict how the pressures will change when the stopcocks are opened, allowing for the calculation of the final pressure in the system.
Recommended video:
Guided course
01:15
Ideal Gas Law Formula

Dalton's Law of Partial Pressures

Dalton's Law states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of each individual gas. This principle is crucial for solving the problem, as it allows us to calculate the total pressure by adding the pressures of the individual gases present in the bulbs once the stopcocks are opened.
Recommended video:
Guided course
00:27
Dalton's Law and Partial Pressure

Volume and Pressure Relationship

The relationship between volume and pressure is described by Boyle's Law, which states that for a given amount of gas at constant temperature, the pressure of the gas is inversely proportional to its volume. In this case, the different volumes of the gas bulbs will affect the final pressure when they are combined, necessitating consideration of both the pressures and volumes of the gases involved.
Recommended video:
Guided course
01:09
Relationship of Volume and Moles Example
Related Practice
Textbook Question

Carbon dioxide, which is recognized as the major contributor to global warming as a 'greenhouse gas,' is formed when fossil fuels are combusted, as in electrical power plants fueled by coal, oil, or natural gas. One potential way to reduce the amount of CO2 added to the atmosphere is to store it as a compressed gas in underground formations. Consider a 1000-megawatt coal-fired power plant that produces about 6 * 106 tons of CO2 per year. (a) Assuming ideal-gas behavior, 101.3 kPa, and 27 C, calculate the volume of CO2 produced by this power plant.

970
views
Textbook Question
Propane, C3H8, liquefies under modest pressure, allowing a large amount to be stored in a container. (a) Calculate the number of moles of propane gas in a 20-L container at 709.3 kPa and 25 C. (b) Calculate the number of moles of liquid propane that can be stored in the same volume if the density of the liquid is 0.590 g/mL. (c) Calculate the ratio of the number of moles of liquid to moles of gas. Discuss this ratio in light of the kinetic-molecular theory of gases.
1167
views
Textbook Question
Nickel carbonyl, Ni1CO24, is one of the most toxic substances known. The present maximum allowable concentration in laboratory air during an 8-hr workday is 1 ppb (parts per billion) by volume, which means that there is one mole of Ni1CO24 for every 109 moles of gas. Assume 24 C and 101.3 kPa pressure. What mass of Ni1CO24 is allowable in a laboratory room that is 3.5 m * 6.0 m * 2.5 m?
713
views
Textbook Question

Assume that a single cylinder of an automobile engine has a volume of 524 cm3. (a) If the cylinder is full of air at 74 C and 99.3 kPa, how many moles of O2 are present? (The mole fraction of O2 in dry air is 0.2095.) (b) How many grams of C8H18 could be combusted by this quantity of O2, assuming complete combustion with formation of CO2 and H2O?

530
views
Textbook Question

Assume that an exhaled breath of air consists of 74.8% N2, 15.3% O2, 3.7% CO2, and 6.2% water vapor. (a) If the total pressure of the gases is 99.8 kPa, calculate the partial pressure of water vapor.

999
views
Textbook Question

Assume that an exhaled breath of air consists of 74.8% N2, 15.3% O2, 3.7% CO2, and 6.2% water vapor. (c) How many grams of glucose (C6H12O6) would need to be metabolized to produce this quantity of CO2? (The chemical reaction is the same as that for combustion of C6H12O6. See Section 3.2 and Problem 10.57.)

518
views