Skip to main content
Ch.10 - Gases
Chapter 10, Problem 101b

Carbon dioxide, which is recognized as the major contributor to global warming as a “greenhouse gas,” is formed when fossil fuels are combusted, as in electrical power plants fueled by coal, oil, or natural gas. One potential way to reduce the amount of CO2 added to the atmosphere is to store it as a compressed gas in underground formations. Consider a 1000-megawatt coal-fired power plant that produces about 6⨉106 tons of CO2 per year. (b) If the CO2 is stored underground as a liquid at 10 C and 12.16 MPa and a density of 1.2 g/cm3, what volume does it possess?

Verified step by step guidance
1
First, convert the mass of CO2 from tons to grams. Since 1 ton is equal to 1,000,000 grams, multiply 6⨉10^6 tons by 1,000,000 to get the mass in grams.
Next, use the density formula to find the volume. The formula is: \( \text{Density} = \frac{\text{Mass}}{\text{Volume}} \). Rearrange this formula to solve for volume: \( \text{Volume} = \frac{\text{Mass}}{\text{Density}} \).
Substitute the mass of CO2 in grams and the given density (1.2 g/cm³) into the rearranged formula to calculate the volume in cubic centimeters.
Convert the volume from cubic centimeters to a more convenient unit if necessary, such as cubic meters or liters, using the conversion factors: 1 m³ = 1,000,000 cm³ and 1 L = 1,000 cm³.
Finally, ensure that all units are consistent and check the calculation for any possible errors or assumptions that need to be addressed.

Verified Solution

Video duration:
8m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?
Related Practice
Textbook Question

A gas bubble with a volume of 1.0 mm3 originates at the bottom of a lake where the pressure is 3.0 atm. Calculate its volume when the bubble reaches the surface of the lake where the pressure is 730 torr, assuming that the temperature does not change.

691
views
Open Question
A 6.0-L tank is filled with helium gas at a pressure of 2 MPa. How many balloons (each 2.00 L) can be inflated to a pressure of 101.3 kPa, assuming that the temperature remains constant and that the tank cannot be emptied below 101.3 kPa?
Textbook Question

Carbon dioxide, which is recognized as the major contributor to global warming as a 'greenhouse gas,' is formed when fossil fuels are combusted, as in electrical power plants fueled by coal, oil, or natural gas. One potential way to reduce the amount of CO2 added to the atmosphere is to store it as a compressed gas in underground formations. Consider a 1000-megawatt coal-fired power plant that produces about 6×106 tons of CO2 per year. (a) Assuming ideal-gas behavior, 101.3 kPa, and 27 °C, calculate the volume of CO2 produced by this power plant.

970
views
Textbook Question
Propane, C3H8, liquefies under modest pressure, allowing a large amount to be stored in a container. (a) Calculate the number of moles of propane gas in a 20-L container at 709.3 kPa and 25 C. (b) Calculate the number of moles of liquid propane that can be stored in the same volume if the density of the liquid is 0.590 g/mL. (c) Calculate the ratio of the number of moles of liquid to moles of gas. Discuss this ratio in light of the kinetic-molecular theory of gases.
1167
views
Textbook Question
Nickel carbonyl, Ni1CO24, is one of the most toxic substances known. The present maximum allowable concentration in laboratory air during an 8-hr workday is 1 ppb (parts per billion) by volume, which means that there is one mole of Ni1CO24 for every 109 moles of gas. Assume 24 C and 101.3 kPa pressure. What mass of Ni1CO24 is allowable in a laboratory room that is 3.5 m * 6.0 m * 2.5 m?
713
views
Textbook Question

Consider the arrangement of bulbs shown in the drawing. Each of the bulbs contains a gas at the pressure shown. What is the pressure of the system when all the stopcocks are opened, assuming that the temperature remains constant? (We can neglect the volume of the capillary tubing connecting the bulbs.)

1529
views