Skip to main content
Ch.11 - Liquids, Solids & Intermolecular Forces
Chapter 11, Problem 66

Methylamine has a vapor pressure of 344 torr at -25 °C and a boiling point of -6.4 °C. What is the ΔHvap for methylamine?

Verified step by step guidance
1
Identify the Clausius-Clapeyron equation: \( \ln \left( \frac{P_1}{P_2} \right) = \frac{\Delta H_{\text{vap}}}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right) \), where \( P_1 \) and \( P_2 \) are the vapor pressures at temperatures \( T_1 \) and \( T_2 \), respectively, and \( R \) is the ideal gas constant.
Convert the temperatures from Celsius to Kelvin by adding 273.15 to each temperature. Thus, \( T_1 = -25 + 273.15 \) K and \( T_2 = -6.4 + 273.15 \) K.
Recognize that at the boiling point, the vapor pressure \( P_2 \) is equal to 1 atm (or 760 torr). Therefore, \( P_1 = 344 \) torr and \( P_2 = 760 \) torr.
Substitute the known values into the Clausius-Clapeyron equation: \( \ln \left( \frac{344}{760} \right) = \frac{\Delta H_{\text{vap}}}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right) \).
Solve for \( \Delta H_{\text{vap}} \) by rearranging the equation: \( \Delta H_{\text{vap}} = R \cdot \ln \left( \frac{344}{760} \right) \cdot \left( \frac{1}{T_2} - \frac{1}{T_1} \right)^{-1} \).