Chapter 4, Problem 149b
(b) When 5.00 g of X is titrated with NaOH, it is found that X has two acidic hydrogens that react with NaOH and that 54.9 mL of 1.00 M NaOH is required to completely neu-tralize the sample. What is the molecular formula of X?
Video transcript
Compound X contains only the elements C, H, O, and S. A 5.00 g sample undergoes complete combustion to give 4.83 g of CO2, 1.48 g of H2O, and a certain amount of SO2 that is further oxidized to SO3 and dissolved in water to form sulfuric acid, H2SO4. On titration of the H2SO4, 109.8 mL of 1.00 M NaOH is needed for complete reaction. (Both H atoms in sulfuric acid are acidic and react with NaOH.) (a) What is the empirical formula of X?
A 1.268 g sample of a metal carbonate (MCO3) was treated with 100.00 mL of 0.1083 M sulfuric acid (H2SO4), yielding CO2 gas and an aqueous solution of the metal sulfate (MSO4). The solution was boiled to remove all the dissolved CO2 and was then titrated with 0.1241 M NaOH. A 71.02 mL volume of NaOH was required to neutralize the excess H2SO4. (a) What is the identity of the metal M?
(b) How many liters of CO2 gas were produced if the density of CO2 is 1.799 g/L?
Element M is prepared industrially by a two-step procedure according to the following (unbalanced) equations:
Assume that 0.855 g of M2O3 is submitted to the reaction sequence. When the HCl produced in step (2) is dissolved in water and titrated with 0.511 M NaOH, 144.2 mL of the NaOH solution is required to neutralize the HCl. (a) Balance both equations.