Skip to main content
Ch.14 - Chemical Kinetics
Chapter 14, Problem 86b

The enzyme urease catalyzes the reaction of urea, (NH2CONH2), with water to produce carbon dioxide and ammonia. In water, without the enzyme, the reaction proceeds with a first-order rate constant of 4.15 × 10-5 s-1 at 100°C. In the presence of the enzyme in water, the reaction proceeds with a rate constant of 3.4 × 104 s-1 at 21°C. (b) If the rate of the catalyzed reaction were the same at 100°C as it is at 21°C, what would be the difference in the activation energy between the catalyzed and uncatalyzed reactions?

Recommended similar problem, with video answer:

Verified Solution

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
8m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Enzyme Catalysis

Enzymes are biological catalysts that speed up chemical reactions by lowering the activation energy required for the reaction to occur. They achieve this by providing an alternative reaction pathway, which stabilizes the transition state. In the case of urease, it facilitates the breakdown of urea into carbon dioxide and ammonia, significantly increasing the reaction rate compared to the uncatalyzed process.
Recommended video:
Guided course
01:59
Catalyzed vs. Uncatalyzed Reactions

Activation Energy

Activation energy is the minimum energy required for a chemical reaction to occur. It represents the energy barrier that reactants must overcome to form products. The presence of a catalyst, such as an enzyme, reduces this energy barrier, allowing reactions to proceed more quickly and at lower temperatures, which is crucial for biological processes.
Recommended video:
Guided course
02:02
Activity Series Chart

Arrhenius Equation

The Arrhenius equation relates the rate constant of a reaction to the temperature and activation energy. It is expressed as k = A * e^(-Ea/RT), where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T is the temperature in Kelvin. This equation is essential for comparing the effects of temperature and catalysts on reaction rates, allowing for the calculation of differences in activation energy between catalyzed and uncatalyzed reactions.
Recommended video:
Guided course
01:20
Arrhenius Equation
Related Practice
Textbook Question

Many metallic catalysts, particularly the precious-metal ones, are often deposited as very thin films on a substance of high surface area per unit mass, such as alumina (Al2O3) or silica (SiO2). (b) How does the surface area affect the rate of reaction?

366
views
Open Question
(b) Automobile catalytic converters have to work at high temperatures, as hot exhaust gases stream through them. In what ways could this be an advantage? In what ways a disadvantage? (c) Why is the rate of flow of exhaust gases over a catalytic converter important?
Open Question
The enzyme carbonic anhydrase catalyzes the reaction CO2(g) + H2O(l) ↔ HCO3⁻(aq) + H⁺(aq). In water, without the enzyme, the reaction proceeds with a rate constant of 0.039 s⁻¹ at 25 _x001E_C. In the presence of the enzyme in water, the reaction proceeds with a rate constant of 1.0 * 10⁶ s⁻¹ at 25 _x001E_C. Assuming the collision factor is the same for both situations, calculate the difference in activation energies for the uncatalyzed versus enzyme-catalyzed reaction.
Textbook Question

The enzyme urease catalyzes the reaction of urea, (NH2CONH2), with water to produce carbon dioxide and ammonia. In water, without the enzyme, the reaction proceeds with a first-order rate constant of 4.15 × 10-5 s-1 at 100°C. In the presence of the enzyme in water, the reaction proceeds with a rate constant of 3.4 × 104 s-1 at 21°C. (c) In actuality, what would you expect for the rate of the catalyzed reaction at 100°C as compared to that at 21°C?

2128
views
Textbook Question

The activation energy of an uncatalyzed reaction is 95 kJ/mol. The addition of a catalyst lowers the activation energy to 55 kJ/mol. Assuming that the collision factor remains the same, by what factor will the catalyst increase the rate of the reaction at (a) 25 C

4095
views
1
rank
Textbook Question

The activation energy of an uncatalyzed reaction is 95 kJ/mol. The addition of a catalyst lowers the activation energy to 55 kJ/mol. Assuming that the collision factor remains the same, by what factor will the catalyst increase the rate of the reaction at (b) 125 °C?

1218
views