Consider a transition in which the electron of a hydrogen atom is excited from n = 1 to n = ∞. (c) What will occur if light with a shorter wavelength than that in part (b) is used to excite the hydrogen atom?
The series of emission lines of the hydrogen atom for which nf = 3 is called the Paschen series. (a) Determine the region of the electromagnetic spectrum in which the lines of the Paschen series are observed.

Recommended similar problem, with video answer:

Verified Solution
Key Concepts
Electromagnetic Spectrum
Hydrogen Emission Spectrum
Paschen Series
Consider a transition in which the electron of a hydrogen atom is excited from n = 1 to n = ∞. (d) How are the results of parts (b) and (c) related to the plot shown in Exercise 6.88?
The human retina has three types of receptor cones, each sensitive to a different range of wavelengths of visible light, as shown in this figure (the colors are merely to differentiate the three curves from one another; they do not indicate the actual colors represented by each curve):
(c) Explain why the sky appears blue even though all wavelengths of solar light are scattered by the atmosphere.
The series of emission lines of the hydrogen atom for which nf = 3 is called the Paschen series. (b) Calculate the wavelengths of the first three lines in the Paschen series—those for which ni = 4, 5, and 6.
Determine whether each of the following sets of quantum numbers for the hydrogen atom are valid. If a set is not valid, indicate which of the quantum numbers has a value that is not valid: (a) n = 3, l = 3, ml = 2, ms = +1/2 (b) n = 4, l = 3, ml = -3, ms = +1/2 (c) n = 3, l = 1, ml = 2, ms = +1/2 (d) n = 5, l = 0, ml = 0, ms = 0 (e) n = 2, l = 1, ml = 1, ms = -1/2
Bohr's model can be used for hydrogen-like ions—ions that have only one electron, such as He+ and Li2+. (a) Why is the Bohr model applicable to He+ ions but not to neutral He atoms?