- Ch.1 - Introduction: Matter, Energy, and Measurement151
- Ch.2 - Atoms, Molecules, and Ions207
- Ch.3 - Chemical Reactions and Reaction Stoichiometry192
- Ch.4 - Reactions in Aqueous Solution157
- Ch.5 - Thermochemistry123
- Ch.6 - Electronic Structure of Atoms135
- Ch.7 - Periodic Properties of the Elements110
- Ch.8 - Basic Concepts of Chemical Bonding122
- Ch.9 - Molecular Geometry and Bonding Theories153
- Ch.10 - Gases139
- Ch.11 - Liquids and Intermolecular Forces77
- Ch.12 - Solids and Modern Materials94
- Ch.13 - Properties of Solutions99
- Ch.14 - Chemical Kinetics124
- Ch.15 - Chemical Equilibrium73
- Ch.16 - Acid-Base Equilibria112
- Ch.17 - Additional Aspects of Aqueous Equilibria109
- Ch.18 - Chemistry of the Environment58
- Ch.19 - Chemical Thermodynamics115
- Ch.20 - Electrochemistry102
- Ch.21 - Nuclear Chemistry67
- Ch.22 - Chemistry of the Nonmetals6
- Ch.23 - Transition Metals and Coordination Chemistry19
- Ch.24 - The Chemistry of Life: Organic and Biological Chemistry16
Chapter 5, Problem 46a
At one time, a common means of forming small quantities of oxygen gas in the laboratory was to heat KClO3: 2 KClO3(s) → 2 KCl(s) + 3 O2(g) ΔH = -89.4 kJ For this reaction, calculate H for the formation of (a) 1.36 mol of O2
Video transcript
Consider the following reaction: 2 CH3OH(g) → 2 CH4(g) + O2(g) ΔH = +252.8 kJ (b) Calculate the amount of heat transferred when 24.0 g of CH3OH(g) is decomposed by this reaction at constant pressure.
Consider the following reaction: 2 CH3OH(g) → 2 CH4(g) + O2(g) ΔH = +252.8 kJ (d) How many kilojoules of heat are released when 38.5 g of CH4(g) reacts completely with O2(g) to form CH3OH(g) at constant pressure?
When solutions containing silver ions and chloride ions are mixed, silver chloride precipitates Ag+(aq) + Cl-(aq) → AgCl(s) H = -65.5 kJ (a) Calculate H for the production of 0.450 mol of AgCl by this reaction. (b) Calculate H for the production of 9.00 g of AgCl. (c) Calculate H when 9.25⨉10-4 mol of AgCl dissolves in water.
At one time, a common means of forming small quantities of oxygen gas in the laboratory was to heat KClO3: 2 KClO3(s) → 2 KCl(s) + 3 O2(g) ΔH = -89.4 kJ For this reaction, calculate H for the formation of (b) 10.4 g of KCl.
At one time, a common means of forming small quantities of oxygen gas in the laboratory was to heat KClO3: 2 KClO3(s) → 2 KCl(s) + 3 O2(g) ΔH = -89.4 kJ (c) The decomposition of KClO3 proceeds spontaneously when it is heated. Do you think that the reverse reaction, the formation of KClO3 from KCl and O2, is likely to be feasible under ordinary conditions? Explain your answer.
Consider the combustion of liquid methanol, CH3OH(l): CH3OH(l) + 3/2 O2(g) → CO2(g) + 2 H2O(l) ΔH = -726.5 kJ (a) What is the enthalpy change for the reverse reaction?