01:52Finding zeros and their multiplicities of a polynomial in factored formlarryschmidt765views1rank1comments
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=4x3+12x−1−2x+1f\left(x\right)=4x^3+\frac12x^{-1}-2x+1f(x)=4x3+21x−1−2x+1254views4rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=2+xf\left(x\right)=2+xf(x)=2+x280views6rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=3x2+5x+2f\left(x\right)=3x^2+5x+2f(x)=3x2+5x+2412views3rank
Multiple ChoiceDetermine the end behavior of the given polynomial function. f(x)=x2+4x+x+7x3f\left(x\right)=x^2+4x+x+7x^3f(x)=x2+4x+x+7x3508views2rank
Multiple ChoiceMatch the given polynomial function to its graph based on end behavior. f(x)=−2x3+x2+1f\left(x\right)=-2x^3+x^2+1f(x)=−2x3+x2+1606views2rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=2x4−12x3+18x2f\left(x\right)=2x^4-12x^3+18x^2f(x)=2x4−12x3+18x2260views3rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=x2(x−1)3(2x+6)f\left(x\right)=x^2\left(x-1\right)^3\left(2x+6\right)f(x)=x2(x−1)3(2x+6)435views3rank
Multiple ChoiceDetermine the maximum number of turning points for the given polynomial function. f(x)=6x4+2xf\left(x\right)=6x^4+2xf(x)=6x4+2x405views3rank
Multiple ChoiceBased ONLY on the maximum number of turning points, which of the following graphs could NOT be the graph of the given function? f(x)=x3+1f\left(x\right)=x^3+1f(x)=x3+1250views2rank
Multiple ChoiceThe given term represents the leading term of some polynomial function. Determine the end behavior and the maximum number of turning points. 4x54x^54x5257views1rank
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=5x^2+6x^3506views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. g(x)=7x^5−πx^3+1/5 x255views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. h(x)=7x^3+2x^2+1/x204views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=x^1/2 −3x^2+5238views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/x^3253views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=2x^4210views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/3451views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = -x^3 + x^2 + 2x375views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = x^6 -6x^4 + 9x^2538views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 254views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 351views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/3(x+3)^4-3200views
Textbook QuestionGraph the following on the same coordinate system. (a) y = x^2 (b) y = 3x^2 (c) y = 1/3x^2 (d) How does the coefficient of x2 affect the shape of the graph?321views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = x^3 - x^2 - 9x + 9283views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=5x^3+7x^2−x+9295views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/2(x-2)^2+4201views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = 4x - x^3382views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=5x^5+2x^3-3x+4463views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-x^3-4x^2+2x-1284views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=11x^4−6x^2+x+3374views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=−5x^4+7x^2−x+9811views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-4x^3+3x^2-1224views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=4x^7-x^5+x^3-1308views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = 2x^2(x - 1)^3(x + 2)225views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=9x^6-3x^4+x^2-2309views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=2(x−5)(x+4)^2555views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=3(x+5)(x+2)^2285views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=10x^6-x^5+2x-2439views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = -x^3(x + 4)^2(x-1)247views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=3+2x-4x^2-5x^10284views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=−3(x+1/2)(x−4)^3229views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=7+2x-5x^2-10x^4210views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=x^3+7x^2−4x−28525views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-2x(x-3)(x+2)435views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x(x+1)(x-1)243views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−x−1; between 1 and 2261views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−4x^2+2; between 0 and 1285views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(3x-1)(x+2)^2244views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^4+6x^3−18x^2; between 2 and 3409views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(4x+3)(x+2)^2246views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = (x + 3)^2208views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3+x^2−2x+1; between -3 and -2228views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+5x^2-x-5317views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+x^2-36x-36167views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -(x - 2)^2 - 5314views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x^3+x^2+2x223views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=3x^3−8x^2+x+2; between 2 and 3254views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-3x^4-5x^3+2x^2178views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = x^2 - 4x + 3315views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3(x^2-4)(x-1)225views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3-5x^2-x+6234views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -2x^2 - 8x - 7621views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^4+x^3-6x^2-7x-2195views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -3x^2 + 18x + 1344views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=3x^4-7x^3-6x^2+12x+8237views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points 10x7194views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^4+3x^3-3x^2-11x-6224views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points -9x6250views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=3x^2-x-4; 1 and 2376views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=-2x^3+5x^2+5x-7; 0 and 1351views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=2x^4-4x^2+4x-8; 1 and 2348views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=x^4-4x^3-x+3; 0.5 and 1343views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)208views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)334views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)^2257views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)(x-5)194views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4-x^3+3x^2-8x+8; no real zero greater than 2185views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)(x-5)251views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=2x^5-x^4+2x^3-2x^2+4x-4; no real zero greater than 1201views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)^2182views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4+x^3-x^2+3; no real zero less than -2344views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5+2x^3-2x^2+5x+5; no real zero less than -1259views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero greater than 1177views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero less than -2256views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero greater than 2174views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero less than -3191views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 297views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 532views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [-1, 0]390views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [1.4, 2]279views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^3+4x^2-8x-8; [-3.8, -3]662views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^4-7x^3+13x^2+6x-28; [-1, 0]678views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Determine when the volume of the box will be greater than 40 in.^3.196views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Find the maximum volume of the box.181views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Factor: x^3+3x^2−x−3233views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Determine whether f(x)=x^4−2x^2+1 is even, odd, or neither. Describe the symmetry, if any, for the graph of f.227views