01:52Finding zeros and their multiplicities of a polynomial in factored formlarryschmidt767views1rank1comments
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=4x3+12x−1−2x+1f\left(x\right)=4x^3+\frac12x^{-1}-2x+1f(x)=4x3+21x−1−2x+1255views4rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=2+xf\left(x\right)=2+xf(x)=2+x281views6rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=3x2+5x+2f\left(x\right)=3x^2+5x+2f(x)=3x2+5x+2415views3rank
Multiple ChoiceDetermine the end behavior of the given polynomial function. f(x)=x2+4x+x+7x3f\left(x\right)=x^2+4x+x+7x^3f(x)=x2+4x+x+7x3512views2rank
Multiple ChoiceMatch the given polynomial function to its graph based on end behavior. f(x)=−2x3+x2+1f\left(x\right)=-2x^3+x^2+1f(x)=−2x3+x2+1613views2rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=2x4−12x3+18x2f\left(x\right)=2x^4-12x^3+18x^2f(x)=2x4−12x3+18x2261views3rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=x2(x−1)3(2x+6)f\left(x\right)=x^2\left(x-1\right)^3\left(2x+6\right)f(x)=x2(x−1)3(2x+6)436views3rank
Multiple ChoiceDetermine the maximum number of turning points for the given polynomial function. f(x)=6x4+2xf\left(x\right)=6x^4+2xf(x)=6x4+2x408views3rank
Multiple ChoiceBased ONLY on the maximum number of turning points, which of the following graphs could NOT be the graph of the given function? f(x)=x3+1f\left(x\right)=x^3+1f(x)=x3+1251views2rank
Multiple ChoiceThe given term represents the leading term of some polynomial function. Determine the end behavior and the maximum number of turning points. 4x54x^54x5258views1rank
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=5x^2+6x^3506views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. g(x)=7x^5−πx^3+1/5 x256views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. h(x)=7x^3+2x^2+1/x205views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=x^1/2 −3x^2+5239views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/x^3254views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=2x^4212views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/3452views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = -x^3 + x^2 + 2x378views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = x^6 -6x^4 + 9x^2543views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 255views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 355views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/3(x+3)^4-3201views
Textbook QuestionGraph the following on the same coordinate system. (a) y = x^2 (b) y = 3x^2 (c) y = 1/3x^2 (d) How does the coefficient of x2 affect the shape of the graph?325views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = x^3 - x^2 - 9x + 9284views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=5x^3+7x^2−x+9297views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/2(x-2)^2+4202views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = 4x - x^3386views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=5x^5+2x^3-3x+4468views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-x^3-4x^2+2x-1285views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=11x^4−6x^2+x+3375views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=−5x^4+7x^2−x+9816views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-4x^3+3x^2-1227views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=4x^7-x^5+x^3-1309views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = 2x^2(x - 1)^3(x + 2)225views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=9x^6-3x^4+x^2-2310views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=2(x−5)(x+4)^2557views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=3(x+5)(x+2)^2286views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=10x^6-x^5+2x-2441views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = -x^3(x + 4)^2(x-1)249views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=3+2x-4x^2-5x^10285views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=−3(x+1/2)(x−4)^3232views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=7+2x-5x^2-10x^4211views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=x^3+7x^2−4x−28532views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-2x(x-3)(x+2)436views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x(x+1)(x-1)245views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−x−1; between 1 and 2261views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−4x^2+2; between 0 and 1287views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(3x-1)(x+2)^2248views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^4+6x^3−18x^2; between 2 and 3410views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(4x+3)(x+2)^2248views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = (x + 3)^2208views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3+x^2−2x+1; between -3 and -2229views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+5x^2-x-5318views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+x^2-36x-36167views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -(x - 2)^2 - 5317views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x^3+x^2+2x225views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=3x^3−8x^2+x+2; between 2 and 3255views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-3x^4-5x^3+2x^2179views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = x^2 - 4x + 3317views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3(x^2-4)(x-1)228views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3-5x^2-x+6235views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -2x^2 - 8x - 7626views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^4+x^3-6x^2-7x-2196views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -3x^2 + 18x + 1344views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=3x^4-7x^3-6x^2+12x+8238views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points 10x7194views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^4+3x^3-3x^2-11x-6225views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points -9x6253views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=3x^2-x-4; 1 and 2377views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=-2x^3+5x^2+5x-7; 0 and 1352views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=2x^4-4x^2+4x-8; 1 and 2350views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=x^4-4x^3-x+3; 0.5 and 1343views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)208views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)339views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)^2258views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)(x-5)194views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4-x^3+3x^2-8x+8; no real zero greater than 2187views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)(x-5)252views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=2x^5-x^4+2x^3-2x^2+4x-4; no real zero greater than 1204views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)^2183views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4+x^3-x^2+3; no real zero less than -2346views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5+2x^3-2x^2+5x+5; no real zero less than -1261views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero greater than 1178views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero less than -2257views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero greater than 2176views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero less than -3192views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 299views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 537views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [-1, 0]393views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [1.4, 2]281views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^3+4x^2-8x-8; [-3.8, -3]666views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^4-7x^3+13x^2+6x-28; [-1, 0]681views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Determine when the volume of the box will be greater than 40 in.^3.197views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Find the maximum volume of the box.181views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Factor: x^3+3x^2−x−3235views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Determine whether f(x)=x^4−2x^2+1 is even, odd, or neither. Describe the symmetry, if any, for the graph of f.229views