01:52Finding zeros and their multiplicities of a polynomial in factored formlarryschmidt788views1rank1comments
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=4x3+12x−1−2x+1f\left(x\right)=4x^3+\frac12x^{-1}-2x+1f(x)=4x3+21x−1−2x+1258views4rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=2+xf\left(x\right)=2+xf(x)=2+x284views6rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=3x2+5x+2f\left(x\right)=3x^2+5x+2f(x)=3x2+5x+2429views3rank
Multiple ChoiceDetermine the end behavior of the given polynomial function. f(x)=x2+4x+x+7x3f\left(x\right)=x^2+4x+x+7x^3f(x)=x2+4x+x+7x3538views2rank
Multiple ChoiceMatch the given polynomial function to its graph based on end behavior. f(x)=−2x3+x2+1f\left(x\right)=-2x^3+x^2+1f(x)=−2x3+x2+1632views2rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=2x4−12x3+18x2f\left(x\right)=2x^4-12x^3+18x^2f(x)=2x4−12x3+18x2270views3rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=x2(x−1)3(2x+6)f\left(x\right)=x^2\left(x-1\right)^3\left(2x+6\right)f(x)=x2(x−1)3(2x+6)448views3rank
Multiple ChoiceDetermine the maximum number of turning points for the given polynomial function. f(x)=6x4+2xf\left(x\right)=6x^4+2xf(x)=6x4+2x423views3rank
Multiple ChoiceBased ONLY on the maximum number of turning points, which of the following graphs could NOT be the graph of the given function? f(x)=x3+1f\left(x\right)=x^3+1f(x)=x3+1255views2rank
Multiple ChoiceThe given term represents the leading term of some polynomial function. Determine the end behavior and the maximum number of turning points. 4x54x^54x5261views1rank
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=5x^2+6x^3516views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. g(x)=7x^5−πx^3+1/5 x264views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. h(x)=7x^3+2x^2+1/x209views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=x^1/2 −3x^2+5243views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/x^3259views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=2x^4221views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/3464views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = -x^3 + x^2 + 2x391views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = x^6 -6x^4 + 9x^2564views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 262views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 369views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/3(x+3)^4-3208views
Textbook QuestionGraph the following on the same coordinate system. (a) y = x^2 (b) y = 3x^2 (c) y = 1/3x^2 (d) How does the coefficient of x2 affect the shape of the graph?337views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = x^3 - x^2 - 9x + 9292views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=5x^3+7x^2−x+9306views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/2(x-2)^2+4209views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = 4x - x^3401views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=5x^5+2x^3-3x+4486views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-x^3-4x^2+2x-1293views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=11x^4−6x^2+x+3383views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=−5x^4+7x^2−x+9837views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-4x^3+3x^2-1234views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=4x^7-x^5+x^3-1316views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = 2x^2(x - 1)^3(x + 2)231views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=9x^6-3x^4+x^2-2319views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=2(x−5)(x+4)^2572views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=3(x+5)(x+2)^2299views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=10x^6-x^5+2x-2458views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = -x^3(x + 4)^2(x-1)259views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=3+2x-4x^2-5x^10299views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=−3(x+1/2)(x−4)^3237views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=7+2x-5x^2-10x^4215views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=x^3+7x^2−4x−28550views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-2x(x-3)(x+2)458views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x(x+1)(x-1)252views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−x−1; between 1 and 2266views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−4x^2+2; between 0 and 1292views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(3x-1)(x+2)^2255views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^4+6x^3−18x^2; between 2 and 3420views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(4x+3)(x+2)^2252views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = (x + 3)^2211views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3+x^2−2x+1; between -3 and -2235views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+5x^2-x-5327views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+x^2-36x-36170views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -(x - 2)^2 - 5326views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x^3+x^2+2x231views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=3x^3−8x^2+x+2; between 2 and 3259views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-3x^4-5x^3+2x^2182views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = x^2 - 4x + 3324views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3(x^2-4)(x-1)235views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3-5x^2-x+6241views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -2x^2 - 8x - 7640views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^4+x^3-6x^2-7x-2200views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -3x^2 + 18x + 1349views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=3x^4-7x^3-6x^2+12x+8242views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points 10x7197views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^4+3x^3-3x^2-11x-6230views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points -9x6261views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=3x^2-x-4; 1 and 2383views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=-2x^3+5x^2+5x-7; 0 and 1357views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=2x^4-4x^2+4x-8; 1 and 2356views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=x^4-4x^3-x+3; 0.5 and 1357views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)215views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)355views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)^2265views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)(x-5)208views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4-x^3+3x^2-8x+8; no real zero greater than 2190views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)(x-5)258views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=2x^5-x^4+2x^3-2x^2+4x-4; no real zero greater than 1208views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)^2188views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4+x^3-x^2+3; no real zero less than -2358views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5+2x^3-2x^2+5x+5; no real zero less than -1267views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero greater than 1182views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero less than -2259views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero greater than 2179views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero less than -3194views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 310views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 551views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [-1, 0]409views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [1.4, 2]284views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^3+4x^2-8x-8; [-3.8, -3]690views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^4-7x^3+13x^2+6x-28; [-1, 0]707views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Determine when the volume of the box will be greater than 40 in.^3.200views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Find the maximum volume of the box.184views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Factor: x^3+3x^2−x−3238views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Determine whether f(x)=x^4−2x^2+1 is even, odd, or neither. Describe the symmetry, if any, for the graph of f.233views