Multiple ChoiceBased on the known points plotted on the graph, determine what intervals the graph should be broken into. Plotted points are: (−3,0),\left(-3,0\right),(−3,0),(0,1),(2,0),\left(0,1\right),\left(2,0\right),(0,1),(2,0), & (5,0)\left(5,0\right)(5,0)187views1rank
Multiple ChoiceGraph the polynomial function. Determine the domain and range. f(x)=(3x+2)(x−1)2f\left(x\right)=\left(3x+2\right)\left(x-1\right)^2f(x)=(3x+2)(x−1)2276views1rank1comments
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=2x^4200views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 233views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = 4x - x^3356views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−4x^2+2; between 0 and 1272views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3-5x^2-x+6224views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -2x^2 - 8x - 7572views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^4+3x^3-3x^2-11x-6209views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points -9x6227views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)(x-5)239views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4+x^3-x^2+3; no real zero less than -2312views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=11x3−6x2+x+3f(x)=11x^3−6x^2+x+3 8views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=5x4+7x2−x+9f(x)=5x^4+7x^2−x+9 8views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=−11x4−6x2+x+3f(x)=−11x^4−6x^2+x+3 17views
Textbook QuestionIn Exercises 15–18, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] <IMAGE> f(x)=−x^4+x^211views
Textbook QuestionIn Exercises 15–18, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] <IMAGE> f(x)=(x−3)^28views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. g(x)=6x^7+πx^5+2/3 x12views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=x^1/3 −4x^2+77views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers.f(x)=2x^4−4x^2+1; between -1 and 09views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^5−x^3−1; between 1 and 27views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=3x^3−10x+9; between -3 and -27views