Multiple ChoiceBased on the known points plotted on the graph, determine what intervals the graph should be broken into. Plotted points are: (−3,0),\left(-3,0\right),(−3,0),(0,1),(2,0),\left(0,1\right),\left(2,0\right),(0,1),(2,0), & (5,0)\left(5,0\right)(5,0)199views1rank
Multiple ChoiceGraph the polynomial function. Determine the domain and range. f(x)=(3x+2)(x−1)2f\left(x\right)=\left(3x+2\right)\left(x-1\right)^2f(x)=(3x+2)(x−1)2306views1rank1comments
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=2x^4208views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 252views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = 4x - x^3381views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−4x^2+2; between 0 and 1285views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3-5x^2-x+6234views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -2x^2 - 8x - 7619views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^4+3x^3-3x^2-11x-6224views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points -9x6249views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)(x-5)250views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4+x^3-x^2+3; no real zero less than -2343views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=11x3−6x2+x+3f(x)=11x^3−6x^2+x+3 14views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=5x4+7x2−x+9f(x)=5x^4+7x^2−x+9 13views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=−11x4−6x2+x+3f(x)=−11x^4−6x^2+x+3 41views
Textbook QuestionIn Exercises 15–18, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] <IMAGE> f(x)=−x^4+x^235views
Textbook QuestionIn Exercises 15–18, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] <IMAGE> f(x)=(x−3)^214views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. g(x)=6x^7+πx^5+2/3 x19views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=x^1/3 −4x^2+715views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers.f(x)=2x^4−4x^2+1; between -1 and 015views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^5−x^3−1; between 1 and 215views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=3x^3−10x+9; between -3 and -227views