Multiple ChoiceGiven the equation x24+y29=1\frac{x^2}{4}+\frac{y^2}{9}=14x2+9y2=1, sketch a graph of the ellipse.209views
Multiple ChoiceGiven the ellipse equation x216+y24=1\frac{x^2}{16}+\frac{y^2}{4}=116x2+4y2=1, determine the magnitude of the semi-major axis (a) and the semi-minor axis (b).202views1rank
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x249+y236=1\frac{x^2}{49}+\frac{y^2}{36}=149x2+36y2=1.203views
Multiple ChoiceDetermine the vertices and foci of the following ellipse: x29+y216=1\frac{x^2}{9}+\frac{y^2}{16}=19x2+16y2=1.202views
Multiple ChoiceFind the standard form of the equation for an ellipse with the following conditions.Foci = (−5,0),(5,0)\left(-5,0\right),\left(5,0\right)(−5,0),(5,0)Vertices = (−8,0),(8,0)\left(-8,0\right),\left(8,0\right)(−8,0),(8,0)163views
Multiple ChoiceGraph the ellipse (x−1)29+(y+3)24=1\frac{\left(x-1\right)^2}{9}+\frac{\left(y+3\right)^2}{4}=1. 244views2rank
Multiple ChoiceDetermine the vertices and foci of the ellipse (x+1)2+(y−2)24=1\left(x+1\right)^2+\frac{\left(y-2\right)^2}{4}=1(x+1)2+4(y−2)2=1.151views
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Foci: (-4,0), (4,0); Vertices: (-5,0) (5,0)1092views1rank1comments
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)574views1rank
Textbook QuestionFind the standard form of the equation of the ellipse satisfying the given conditions. Major axis horizontal with length 12; length of minor axis = 4; center: (-3,5)574views1rank
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/16 +y^2/4 = 1208views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/25 +y^2/64 = 1267views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1246views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/49 +y^2/81 = 1246views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1207views
Textbook QuestionIn Exercises 1–18, graph each ellipse and locate the foci. x^2/(9/4) +y^2/(25/4) = 1207views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 258views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 239views
Textbook QuestionIn Exercises 19–24, find the standard form of the equation of each ellipse and give the location of its foci. 181views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)296views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-5, 0), (5, 0); vertices: (-8, 0), (8,0)296views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (0, -4), (0, 4); vertices: (0, −7), (0, 7)216views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Foci: (-2, 0), (2, 0); y-intercepts: -3 and 3228views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)283views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis horizontal with length 8; length of minor axis = 4; center: (0, 0)283views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)222views
Textbook QuestionIn Exercises 25–36, find the standard form of the equation of each ellipse satisfying the given conditions. Major axis vertical with length 10; length of minor axis = 4; center: (-2, 3)222views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 2)²/9 + (y -1)² /4= 1275views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²+ 4(y -2)² = 16166views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 4)²/9 + (y +2)² /25= 1172views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. x²/25 + (y -2)² /36= 1180views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x +3)²/9 + (y -2)² = 1174views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. (x − 1)²/2 + (y +3)² /5= 1195views
Textbook QuestionIn Exercises 37–50, graph each ellipse and give the location of its foci. 9(x − 1)²+4(y+3)² = 36160views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. 4x^2 - 9y^2 - 8x - 36y - 68 = 0201views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x^2 +25y² - 36x + 50y – 164 = 0153views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 9x² + 16y² – 18x + 64y – 71 = 0163views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 4x² + y²+ 16x - 6y - 39 = 0153views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 25x²+4y² – 150x + 32y + 189 = 0183views
Textbook QuestionIn Exercises 51–60, convert each equation to standard form by completing the square on x and y. Then graph the ellipse and give the location of its foci. 36x^2 +9y^2 - 216x = 0190views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.179views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.142views
Textbook QuestionIn Exercises 61–66, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations.187views
Textbook QuestionFind the standard form of the equation of an ellipse with vertices at (0, -6) and (0, 6), passing through (2, 4).456views
Textbook QuestionThe equation of the red ellipse in the figure shown is x^2/25 + y^2/9 =1Write the equation for each circle shown in the figure. 231views