Biomaterials: The Intersection of Biology and Materials Science, 1st edition

Published by Pearson (January 2, 2008) © 2009

  • Johnna S. Temenoff Georgia Tech and Emory University
  • Antonios G. Mikos
$218.66

  • Hardcover, paperback or looseleaf edition
  • Affordable rental option for select titles
  • Free shipping on looseleafs and traditional textbooks
Intended for use in an introductory course on biomaterials, taught primarily in departments of biomedical engineering. The book covers classes of materials commonly used in biomedical applications, followed by coverage of the biocompatibility of those materials with the biological environment. Finally, it covers some in-depth applications of biomaterials. It does all of this with an overall emphasis on tissue engineering.
Co-authors, Johnna Temenoff and Antonios Mikos, are the 2010 Meriam/Wiley Distinguished Author Award Recipients for Biomaterials: The Intersection of Biology and Materials Science.
  • Topics build from basic chemical/structural organisation of materials through physical and mechanical properties to material processing/manufacturing.
  • Included at the end of each chapter are key measurement methods and techniques for determining/measuring the material or biological properties described.
  • Each chapter includes a list of specific learning objectives.

Chapter 1: Materials for Biomedical Applications  1-1

1.1.   Introduction to biomaterials     1-2

1.2.   Biological response to biomaterials     1-8

1.3.   Biomaterial product testing and FDA approval    1-10

1.4.   Types of biomaterials       1-11

1.5.   Processing of biomaterials    1-15

1.6.   Important properties of biomaterials     1-16

1.7.   Principles of chemistry     1-21

1.8.   Summary     1-35

1.9.   Problems     1-37

1.10. Tables     1-39

1.11. Figures    1-44

1.12. References      1-70

1.13. Additional reading    1-72

 

Chapter 2:  Chemical Structure of Biomaterials      2-1

2.1.   Introduction: Bonding and the structure of biomaterials  2-2

2.2.   Structure of Metals      2-2

2.3.   Structure of Ceramics     2-18

2.4.   Structure of polymers       2-24

2.5.   Techniques: Introduction to material characterization     2-41

2.6.   Summary     2-62

2.7.   Problems     2-64

2.8.   Tables     2-69

2.9.   Figures    2-79

2.10. References      2-148

2.11. Additional reading    2-149

 

Chapter 3: Physical Properties of Biomaterials   3-1

3.1.   Introduction: From atomic groupings to bulk materials   3-2

3.2.   Crystallinity and linear defects      3-2

3.3.   Crystallinity and planar defects     3-8

3.4.   Crystallinity and volume defects    3-12

3.5.   Crystallinity and polymeric materials     3-13

3.6.   Thermal transitions of crystalline and non-crystalline materials    3-18

3.7.   Techniques: Introduction to Thermal Analysis   3-26

3.8.   Summary     3-30

3.9.   Problems     3-32

3.10. Tables     3-35

3.11. Figures    3-38

3.12. References      3-63

3.13. Additional reading    3-64

 

Chapter 4: Mechanical Properties of Biomaterials     4-1

4.1.   Introduction: Modes of mechanical testing    4-3

4.2.   Mechanical testing methods, results and calculations     4-3

4.3.   Fracture and failure      4-40

4.4.   Fatigue and fatigue testing    4-43

4.5.   Methods to improve mechanical properties   4-46

4.6.   Techniques: Introduction to Mechanical Analysis  4-49

4.7.   Summary     4-51

4.8.   Problems     4-54

4.9.   Figures    4-58

4.10. References      4-101

4.11. Additional reading    4-101

 

Chapter 5: Biomaterial Degradation    5-1

5.1.   Introduction: Degradation in the biological environment     5-2

5.2.   Corrosion/degradation of metals and ceramics  5-3

5.3.   Degradation of polymers      5-18

5.4.   Biodegradable materials   5-22

5.5.   Techniques: Assays for extent of degradation    5-29

5.6.   Summary     5-30

5.7.   Problems     5-32

5.8.   Tables     5-37

5.9.   Figures    5-40

5.10. References      5-54

5.11. Additional reading    5-55

 

Chapter 6: Biomaterial Processing   6-1

6.1.   Introduction:  Importance of biomaterials processing     6-2

6.2.   Processing to improve bulk properties      6-2

6.3.   Processing to form desired shapes    6-12

6.4.   Processing to improve biocompatibility     6-26

6.5.   Summary     6-30

6.6.   Problems     6-32

6.7.   Tables     6-34

6.8.   Figures    6-35

6.9.   References      6-54

6.10. Additional reading    6-55

 

Chapter 7: Surface Properties of Biomaterials    7-1

7.1.   Introduction: Concepts in surface chemistry and biology    7-2

7.2.   Physicochemical surface modification techniques   7-6

7.3.   Biological surface modification techniques     7-20

7.4.   Surface properties and degradation      7-25

7.5.   Patterning techniques for surfaces     7-25

7.6.   Techniques: Introduction to surface characterization  7-27

7.7.   Summary     7-46

7.8.   Problems     7-48

7.9.   Tables     7-53

7.10. Figures    7-58

7.11. References      7-107

7.12. Additional reading    7-109

 

Chapter 8: Protein Interactions with Biomaterials  8-1

8.1.   Introduction: Thermodynamics of protein adsorption     8-2

8.2.   Protein structure      8-7

8.3.   Protein transport and adsorption kinetics  8-15

8.4.   Reversibility of protein adsorption    8-18

8.5.   Techniques: Assays for protein type and amount   8-22

8.6.   Summary     8-33

8.7.   Problems     8-35

8.8.   Tables     8-39

8.9.   Figures    8-42

8.10. References      8-74

8.11. Additional reading    8-75

 

Chapter 9: Cell Interactions with Biomaterials    9-1

9.1.   Introduction: Cell-surface interactions and cellular functions   9-2

9.2.   Cellular structure      9-3

9.3.   Extracellular environment     9-14

9.4.   Cell-environment interactions affect cellular functions    9-23

9.5.   Models of adhesion, spreading and migration    9-34

9.6.   Techniques: Assays to determine effects of cell-material interactions  9-43

9.7.   Summary     9-53

9.8.   Problems     9-57

9.9.   Tables     9-61

9.10. Figures    9-62

9.11. References      9-113

9.12. Additional reading    9-115

 

Chapter 10: Biomaterial Implantation and Acute Inflammation     10-1

10.1. Introduction: Overview of innate and acquired immunity    10-2

10.2. Clinical signs of inflammation and their causes   10-5

10.4. Role of other granulocytes    10-11

10.5. Termination of acute inflammation     10-16

10.6. Techniques: In vitro assays for inflammatory response   10-17

10.7. Summary     10-20

10.8. Problems     10-22

10.9. Tables     10-24

10.10.   Figures    10-27

10.11.   References      10-34

10.12.   Additional reading    10-34

 

Chapter 11: Wound Healing and the Presence of Biomaterials  11-1

11.1. Introduction: Formation of granulation tissue     11-2

11.2. Foreign body reaction      11-3

11.3. Fibrous encapsulation      11-4

11.4. Chronic inflammation       11-7

11.5. Four types of resolution   11-8

11.6. Repair vs. regeneration: wound healing in skin   11-9

11.7. Techniques: In vivo assays for inflammatory response   11-12

11.8. Summary     11-20

11.9. Problems     11-22

11.10.   Tables     11-25

11.11.   Figures    11-28

11.12.   References      11-36

11.13.   Additional reading    11-37

 

Chapter 12: Immune Response to Biomaterials      12-1

12.1. Introduction: Overview of acquired immunity    12-2

12.2. Antigen presentation and lymphocyte maturation   12-4

12.3. B cells and antibodies      12-8

12.4. T cells     12-12

12.5. The complement system   12-14

12.6. Undesired immune responses to biomaterials    12-19

12.7. Techniques: Assays for immune response     12-25

12.8. Summary     12-28

12.9. Problems     12-32

12.10.   Tables     12-34

12.11.   Figures    12-35

12.12.   References      12-51

12.13.   Additional reading    12-51

 

Chapter 13: Biomaterials and Thrombosis   13-1

13.1. Introduction: Overview of hemostasis   13-2

13.2. Role of platelets       13-2

13.3. Coagulation cascade    13-5

13.4. Means of limiting clot formation    13-9

13.5. Role of endothelium     13-11

13.6. Tests for hemocompatibility      13-13

13.7. Summary     13-18

13.8. Problems     13-20

13.9. Tables     13-25

13.10.   Figures    13-27

13.11.   References      13-32

13.12.   Additional reading    13-33

 

Chapter 14: Infection, Tumorigenesis and Calcification of Biomaterials   14-1

14.1.  Introduction: Overview of other potential problems with biomaterials implantation      14-2

14.2. Infection      14-2

14.3. Techniques for infection experiments    14-10

14.4. Tumorigenesis      14-16

14.5. Techniques for tumorigenesis experiments     14-21

14.6. Pathologic calcification     14-23

14.7. Techniques for pathologic calcification experiments   14-26

14.8. Summary     14-30

14.9. Problems     14-33

14.10.   Figures    14-36

14.11.   References      14-45

14.12.   Additional reading    14-46

 

List of Abbreviations     Appendix I-1

List of Symbols      Appendix I-6

Index        Index

Johnna S. Temenoff and Antonios G. Mikos, co-authors of Biomaterials: The Intersection of Biology and Materials Science, have been chosen to receive the 2010 Meriam/Wiley Distinguished Author Award from the American Society for Engineering Education (ASEE). This marks the first time that authors of a biomedical engineering textbook have been recognized with this award.

Need help? Get in touch

Video
Play
Privacy and cookies
By watching, you agree Pearson can share your viewership data for marketing and analytics for one year, revocable by deleting your cookies.

Pearson eTextbook: What’s on the inside just might surprise you

They say you can’t judge a book by its cover. It’s the same with your students. Meet each one right where they are with an engaging, interactive, personalized learning experience that goes beyond the textbook to fit any schedule, any budget, and any lifestyle.Â