Multiple ChoiceIf vectors v⃗=⟨4,3⟩v ⃗=⟨4,3⟩v⃗=⟨4,3⟩ and u⃗=⟨9,1⟩u ⃗=⟨9,1⟩u⃗=⟨9,1⟩, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗.112views
Multiple ChoiceIf vectors v⃗=12ı^v⃗=12îv⃗=12ı^ and u⃗=100ȷ^u⃗=100ĵu⃗=100ȷ^, calculate u⃗⋅v⃗u ⃗⋅v ⃗u⃗⋅v⃗.122views
Multiple ChoiceIf vectors a⃗=13ı^a⃗=13îa⃗=13ı^, ⃗b⃗=5ı^−12ȷ^⃗b⃗=5î-12ĵ⃗b⃗=5ı^−12ȷ^, and c⃗=24ȷ^c⃗=24ĵc⃗=24ȷ^, calculate b⃗⋅(a⃗−c⃗)b ⃗⋅(a ⃗-c ⃗)b⃗⋅(a⃗−c⃗).108views1rank
Multiple ChoiceIf vectors ∣a⃗∣=3|a⃗|=3∣a⃗∣=3 and ∣b⃗∣=7|b⃗|=7∣b⃗∣=7, and a⃗⋅b⃗=14.85a⃗\cdot b⃗=14.85a⃗⋅b⃗=14.85, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.107views
Multiple ChoiceIf vectors a⃗=4ı^a⃗=4îa⃗=4ı^ and b⃗=3ı^−2ȷ^b⃗=3î-2ĵb⃗=3ı^−2ȷ^, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.116views
Multiple ChoiceIf vectors ∣v⃗∣=12|v ⃗ |=12∣v⃗∣=12, ∣u⃗∣=100|u ⃗ |=100 ∣u⃗∣=100 and the angle between v⃗v ⃗v⃗ & u⃗u ⃗u⃗ is θ=π6\theta=\frac{\pi}{6}θ=6π, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗ .127views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 3i + j, w = i + 3j233views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 5i - 4j, w = -2i - j193views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = -6i - 5j, w = -10i - 8j246views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. v ⋅ w174views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈2, 1〉, 〈-3, 1〉 193views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈4, 0〉, 〈2, 2〉 152views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈1, 6〉, 〈-1, 7〉 139views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.3i + 4j, j182views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.2i + 2j, -5i - 5j187views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. projᵥᵥv184views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ (v + w)336views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ v + u ⋅ w186views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. (4u) ⋅ v258views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. 4(u ⋅ v)196views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 2i - j, w = 3i + 4j270views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = -3i + 2j, w = 4i - j242views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 6i, w = 5i + 4j271views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = i + j, w = i - j309views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i + 8j, w = 4i - j238views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i - 2j, w = -i + j198views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4i238views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4j307views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = 3i - 2j, w = i - j212views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 3j, w = -2i + 5j198views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 2j, w = 3i + 6j258views
Textbook QuestionIn Exercises 37–39, find the dot product v ⋅ w. Then find the angle between v and w to the nearest tenth of a degree. v = 2i + 4j, w = 6i - 11j180views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. 5u ⋅ (3v - 4w)226views
Textbook QuestionIn Exercises 40–41, use the dot product to determine whether v and w are orthogonal. v = 12i - 8j, w = 2i + 3j182views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. projᵤ (v + w)205views
Textbook QuestionIn Exercises 42–43, find projᵥᵥv. Then decompose v into two vectors, v₁ and v₂ where v₁ is parallel to w and v₂ is orthogonal to w. v = -2i + 5j, w = 5i + 4j198views
Textbook QuestionIn Exercises 43–44, find the angle, in degrees, between v and w. v = 2 cos 4𝜋 i + 2 sin 4𝜋 j, w = 3 cos 3𝜋 i + 3 sin 3𝜋 j 3 3 2 2195views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i - 10j180views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 10j204views1rank
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 18 j 5279views