Multiple ChoiceIf vectors v⃗=⟨4,3⟩v ⃗=⟨4,3⟩v⃗=⟨4,3⟩ and u⃗=⟨9,1⟩u ⃗=⟨9,1⟩u⃗=⟨9,1⟩, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗.104views
Multiple ChoiceIf vectors v⃗=12ı^v⃗=12îv⃗=12ı^ and u⃗=100ȷ^u⃗=100ĵu⃗=100ȷ^, calculate u⃗⋅v⃗u ⃗⋅v ⃗u⃗⋅v⃗.115views
Multiple ChoiceIf vectors a⃗=13ı^a⃗=13îa⃗=13ı^, ⃗b⃗=5ı^−12ȷ^⃗b⃗=5î-12ĵ⃗b⃗=5ı^−12ȷ^, and c⃗=24ȷ^c⃗=24ĵc⃗=24ȷ^, calculate b⃗⋅(a⃗−c⃗)b ⃗⋅(a ⃗-c ⃗)b⃗⋅(a⃗−c⃗).103views
Multiple ChoiceIf vectors ∣a⃗∣=3|a⃗|=3∣a⃗∣=3 and ∣b⃗∣=7|b⃗|=7∣b⃗∣=7, and a⃗⋅b⃗=14.85a⃗\cdot b⃗=14.85a⃗⋅b⃗=14.85, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.99views
Multiple ChoiceIf vectors a⃗=4ı^a⃗=4îa⃗=4ı^ and b⃗=3ı^−2ȷ^b⃗=3î-2ĵb⃗=3ı^−2ȷ^, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.107views
Multiple ChoiceIf vectors ∣v⃗∣=12|v ⃗ |=12∣v⃗∣=12, ∣u⃗∣=100|u ⃗ |=100 ∣u⃗∣=100 and the angle between v⃗v ⃗v⃗ & u⃗u ⃗u⃗ is θ=π6\theta=\frac{\pi}{6}θ=6π, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗ .116views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 3i + j, w = i + 3j222views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 5i - 4j, w = -2i - j181views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = -6i - 5j, w = -10i - 8j234views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. v ⋅ w169views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈2, 1〉, 〈-3, 1〉 193views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈4, 0〉, 〈2, 2〉 140views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈1, 6〉, 〈-1, 7〉 139views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.3i + 4j, j172views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.2i + 2j, -5i - 5j174views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. projᵥᵥv174views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ (v + w)327views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ v + u ⋅ w182views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. (4u) ⋅ v249views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. 4(u ⋅ v)186views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 2i - j, w = 3i + 4j254views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = -3i + 2j, w = 4i - j229views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 6i, w = 5i + 4j260views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = i + j, w = i - j298views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i + 8j, w = 4i - j228views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i - 2j, w = -i + j189views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4i221views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4j292views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = 3i - 2j, w = i - j200views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 3j, w = -2i + 5j191views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 2j, w = 3i + 6j247views
Textbook QuestionIn Exercises 37–39, find the dot product v ⋅ w. Then find the angle between v and w to the nearest tenth of a degree. v = 2i + 4j, w = 6i - 11j173views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. 5u ⋅ (3v - 4w)214views
Textbook QuestionIn Exercises 40–41, use the dot product to determine whether v and w are orthogonal. v = 12i - 8j, w = 2i + 3j174views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. projᵤ (v + w)195views
Textbook QuestionIn Exercises 42–43, find projᵥᵥv. Then decompose v into two vectors, v₁ and v₂ where v₁ is parallel to w and v₂ is orthogonal to w. v = -2i + 5j, w = 5i + 4j190views
Textbook QuestionIn Exercises 43–44, find the angle, in degrees, between v and w. v = 2 cos 4𝜋 i + 2 sin 4𝜋 j, w = 3 cos 3𝜋 i + 3 sin 3𝜋 j 3 3 2 2188views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i - 10j173views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 10j195views1rank
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 18 j 5260views