Multiple ChoiceIf vectors v⃗=⟨4,3⟩v ⃗=⟨4,3⟩v⃗=⟨4,3⟩ and u⃗=⟨9,1⟩u ⃗=⟨9,1⟩u⃗=⟨9,1⟩, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗.97views
Multiple ChoiceIf vectors v⃗=12ı^v⃗=12îv⃗=12ı^ and u⃗=100ȷ^u⃗=100ĵu⃗=100ȷ^, calculate u⃗⋅v⃗u ⃗⋅v ⃗u⃗⋅v⃗.105views
Multiple ChoiceIf vectors a⃗=13ı^a⃗=13îa⃗=13ı^, ⃗b⃗=5ı^−12ȷ^⃗b⃗=5î-12ĵ⃗b⃗=5ı^−12ȷ^, and c⃗=24ȷ^c⃗=24ĵc⃗=24ȷ^, calculate b⃗⋅(a⃗−c⃗)b ⃗⋅(a ⃗-c ⃗)b⃗⋅(a⃗−c⃗).98views
Multiple ChoiceIf vectors ∣a⃗∣=3|a⃗|=3∣a⃗∣=3 and ∣b⃗∣=7|b⃗|=7∣b⃗∣=7, and a⃗⋅b⃗=14.85a⃗\cdot b⃗=14.85a⃗⋅b⃗=14.85, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.91views
Multiple ChoiceIf vectors a⃗=4ı^a⃗=4îa⃗=4ı^ and b⃗=3ı^−2ȷ^b⃗=3î-2ĵb⃗=3ı^−2ȷ^, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.99views
Multiple ChoiceIf vectors ∣v⃗∣=12|v ⃗ |=12∣v⃗∣=12, ∣u⃗∣=100|u ⃗ |=100 ∣u⃗∣=100 and the angle between v⃗v ⃗v⃗ & u⃗u ⃗u⃗ is θ=π6\theta=\frac{\pi}{6}θ=6π, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗ .104views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 3i + j, w = i + 3j214views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 5i - 4j, w = -2i - j175views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = -6i - 5j, w = -10i - 8j227views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. v ⋅ w164views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈2, 1〉, 〈-3, 1〉 193views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈4, 0〉, 〈2, 2〉 132views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈1, 6〉, 〈-1, 7〉 139views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.3i + 4j, j160views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.2i + 2j, -5i - 5j165views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. projᵥᵥv170views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ (v + w)315views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ v + u ⋅ w176views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. (4u) ⋅ v242views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. 4(u ⋅ v)179views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 2i - j, w = 3i + 4j237views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = -3i + 2j, w = 4i - j217views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 6i, w = 5i + 4j250views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = i + j, w = i - j288views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i + 8j, w = 4i - j216views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i - 2j, w = -i + j182views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4i210views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4j278views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = 3i - 2j, w = i - j193views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 3j, w = -2i + 5j183views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 2j, w = 3i + 6j241views
Textbook QuestionIn Exercises 37–39, find the dot product v ⋅ w. Then find the angle between v and w to the nearest tenth of a degree. v = 2i + 4j, w = 6i - 11j163views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. 5u ⋅ (3v - 4w)204views
Textbook QuestionIn Exercises 40–41, use the dot product to determine whether v and w are orthogonal. v = 12i - 8j, w = 2i + 3j164views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. projᵤ (v + w)189views
Textbook QuestionIn Exercises 42–43, find projᵥᵥv. Then decompose v into two vectors, v₁ and v₂ where v₁ is parallel to w and v₂ is orthogonal to w. v = -2i + 5j, w = 5i + 4j180views
Textbook QuestionIn Exercises 43–44, find the angle, in degrees, between v and w. v = 2 cos 4𝜋 i + 2 sin 4𝜋 j, w = 3 cos 3𝜋 i + 3 sin 3𝜋 j 3 3 2 2180views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i - 10j165views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 10j184views1rank
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 18 j 5248views