Multiple ChoiceIf vectors v⃗=⟨4,3⟩v ⃗=⟨4,3⟩v⃗=⟨4,3⟩ and u⃗=⟨9,1⟩u ⃗=⟨9,1⟩u⃗=⟨9,1⟩, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗.109views
Multiple ChoiceIf vectors v⃗=12ı^v⃗=12îv⃗=12ı^ and u⃗=100ȷ^u⃗=100ĵu⃗=100ȷ^, calculate u⃗⋅v⃗u ⃗⋅v ⃗u⃗⋅v⃗.119views
Multiple ChoiceIf vectors a⃗=13ı^a⃗=13îa⃗=13ı^, ⃗b⃗=5ı^−12ȷ^⃗b⃗=5î-12ĵ⃗b⃗=5ı^−12ȷ^, and c⃗=24ȷ^c⃗=24ĵc⃗=24ȷ^, calculate b⃗⋅(a⃗−c⃗)b ⃗⋅(a ⃗-c ⃗)b⃗⋅(a⃗−c⃗).106views1rank
Multiple ChoiceIf vectors ∣a⃗∣=3|a⃗|=3∣a⃗∣=3 and ∣b⃗∣=7|b⃗|=7∣b⃗∣=7, and a⃗⋅b⃗=14.85a⃗\cdot b⃗=14.85a⃗⋅b⃗=14.85, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.103views
Multiple ChoiceIf vectors a⃗=4ı^a⃗=4îa⃗=4ı^ and b⃗=3ı^−2ȷ^b⃗=3î-2ĵb⃗=3ı^−2ȷ^, determine the angle between vectors a⃗a ⃗a⃗ and b⃗b ⃗b⃗.112views
Multiple ChoiceIf vectors ∣v⃗∣=12|v ⃗ |=12∣v⃗∣=12, ∣u⃗∣=100|u ⃗ |=100 ∣u⃗∣=100 and the angle between v⃗v ⃗v⃗ & u⃗u ⃗u⃗ is θ=π6\theta=\frac{\pi}{6}θ=6π, calculate v⃗⋅u⃗v ⃗⋅u ⃗v⃗⋅u⃗ .122views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 3i + j, w = i + 3j229views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = 5i - 4j, w = -2i - j187views
Textbook QuestionIn Exercises 1–8, use the given vectors to find v⋅w and v⋅v. v = -6i - 5j, w = -10i - 8j240views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. v ⋅ w172views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈2, 1〉, 〈-3, 1〉 193views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈4, 0〉, 〈2, 2〉 147views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.〈1, 6〉, 〈-1, 7〉 139views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.3i + 4j, j177views
Textbook QuestionFind the angle between each pair of vectors. Round to two decimal places as necessary.2i + 2j, -5i - 5j184views
Textbook QuestionIn Exercises 5–8, let v = -5i + 2j and w = 2i - 4j Find the specified vector, scalar, or angle. projᵥᵥv180views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ (v + w)332views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. u ⋅ v + u ⋅ w183views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. (4u) ⋅ v254views
Textbook QuestionIn Exercises 9–16, let u = 2i - j, v = 3i + j, and w = i + 4j. Find each specified scalar. 4(u ⋅ v)190views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 2i - j, w = 3i + 4j263views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = -3i + 2j, w = 4i - j237views
Textbook QuestionIn Exercises 17–22, find the angle between v and w. Round to the nearest tenth of a degree. v = 6i, w = 5i + 4j266views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = i + j, w = i - j305views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i + 8j, w = 4i - j235views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 2i - 2j, w = -i + j194views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4i233views
Textbook QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal. v = 3i, w = -4j302views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = 3i - 2j, w = i - j208views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 3j, w = -2i + 5j194views
Textbook QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v = i + 2j, w = 3i + 6j250views
Textbook QuestionIn Exercises 37–39, find the dot product v ⋅ w. Then find the angle between v and w to the nearest tenth of a degree. v = 2i + 4j, w = 6i - 11j177views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. 5u ⋅ (3v - 4w)221views
Textbook QuestionIn Exercises 40–41, use the dot product to determine whether v and w are orthogonal. v = 12i - 8j, w = 2i + 3j179views
Textbook QuestionIn Exercises 39–42, let u = -i + j, v = 3i - 2j, and w = -5j. Find each specified scalar or vector. projᵤ (v + w)200views
Textbook QuestionIn Exercises 42–43, find projᵥᵥv. Then decompose v into two vectors, v₁ and v₂ where v₁ is parallel to w and v₂ is orthogonal to w. v = -2i + 5j, w = 5i + 4j196views
Textbook QuestionIn Exercises 43–44, find the angle, in degrees, between v and w. v = 2 cos 4𝜋 i + 2 sin 4𝜋 j, w = 3 cos 3𝜋 i + 3 sin 3𝜋 j 3 3 2 2193views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i - 10j178views
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 10j201views1rank
Textbook QuestionIn Exercises 45–50, determine whether v and w are parallel, orthogonal, or neither. v = 3i - 5j, w = 6i + 18 j 5273views