Here are the essential concepts you must grasp in order to answer the question correctly.
Cofunction Identities
Cofunction identities in trigonometry relate the values of trigonometric functions of complementary angles. For example, the sine of an angle is equal to the cosine of its complement, and similarly for tangent and cotangent. This means that for any angle θ, the identity tan(θ) = cot(π/2 - θ) holds true, allowing us to find cofunctions that share the same value.
Recommended video:
Tangent Function
The tangent function, denoted as tan(θ), is defined as the ratio of the opposite side to the adjacent side in a right triangle. It can also be expressed in terms of sine and cosine as tan(θ) = sin(θ)/cos(θ). Understanding the properties and behavior of the tangent function is essential for solving problems involving angles and their relationships.
Recommended video:
Introduction to Tangent Graph
Angle Measurement in Radians
In trigonometry, angles can be measured in degrees or radians, with radians being the standard unit in mathematical contexts. The angle π/7 radians corresponds to approximately 25.7 degrees. Familiarity with converting between these two units and understanding their implications in trigonometric functions is crucial for accurately interpreting and solving trigonometric problems.
Recommended video:
Converting between Degrees & Radians