Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Find the exact value of the expression. sin15°
A
42−6
B
46−2
C
22−6
D
44
Verified step by step guidance
1
Recognize that the expression involves the sine of an angle, specifically \( \sin 15^\circ \). This angle can be expressed using the angle subtraction identity: \( 15^\circ = 45^\circ - 30^\circ \).
Apply the sine subtraction formula: \( \sin(a - b) = \sin a \cos b - \cos a \sin b \). For \( a = 45^\circ \) and \( b = 30^\circ \), substitute these values into the formula.
Substitute these trigonometric values into the sine subtraction formula: \( \sin 15^\circ = \left( \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{3}}{2} \right) - \left( \frac{\sqrt{2}}{2} \right) \left( \frac{1}{2} \right) \).
Simplify the expression: \( \sin 15^\circ = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4} \). This matches one of the given answer choices.