Table of contents
- 0. Fundamental Concepts of Algebra3h 29m
- 1. Equations and Inequalities3h 27m
- 2. Graphs1h 43m
- 3. Functions & Graphs2h 17m
- 4. Polynomial Functions1h 54m
- 5. Rational Functions1h 23m
- 6. Exponential and Logarithmic Functions2h 28m
- 7. Measuring Angles40m
- 8. Trigonometric Functions on Right Triangles2h 5m
- 9. Unit Circle1h 19m
- 10. Graphing Trigonometric Functions1h 19m
- 11. Inverse Trigonometric Functions and Basic Trig Equations1h 41m
- 12. Trigonometric Identities 2h 34m
- 13. Non-Right Triangles1h 38m
- 14. Vectors2h 25m
- 15. Polar Equations2h 5m
- 16. Parametric Equations1h 6m
- 17. Graphing Complex Numbers1h 7m
- 18. Systems of Equations and Matrices3h 6m
- 19. Conic Sections2h 36m
- 20. Sequences, Series & Induction1h 15m
- 21. Combinatorics and Probability1h 45m
- 22. Limits & Continuity1h 49m
- 23. Intro to Derivatives & Area Under the Curve2h 9m
3. Functions & Graphs
Function Composition
Struggling with Precalculus?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Given the functions f(x)=x+4 and g(x)=(x−2)2−4 find (f∘g)(x) and (g∘f)(x)
A
(f∘g)(x)=x−2 ; (g∘f)(x)=(x+4)−4x+4
B
(f∘g)(x)=x−2 ; (g∘f)(x)=x(x+4)
C
(f∘g)(x)=x−2 ; (g∘f)(x)=4x−4
D
(f∘g)(x)=x−2 ; (g∘f)(x)=(x+4)−4x+4

1
Understand the concept of function composition: (f∘g)(x) means applying g first and then f to the result, while (g∘f)(x) means applying f first and then g to the result.
Start with (f∘g)(x): Substitute g(x) into f(x). Given f(x) = \sqrt{x+4} and g(x) = (x-2)^2 - 4, replace x in f(x) with g(x).
Calculate (f∘g)(x): f(g(x)) = \sqrt{((x-2)^2 - 4) + 4}. Simplify the expression inside the square root.
Next, find (g∘f)(x): Substitute f(x) into g(x). Given g(x) = (x-2)^2 - 4 and f(x) = \sqrt{x+4}, replace x in g(x) with f(x).
Calculate (g∘f)(x): g(f(x)) = (\sqrt{x+4} - 2)^2 - 4. Simplify the expression by expanding the square and subtracting 4.
Watch next
Master Function Composition with a bite sized video explanation from Patrick
Start learning